[AI数理] 指数関数

[AI数理] 指数関数

おはようございます!(株) Qualiteg 研究部です。本日は指数関数を学びましょう。

対数関数の微分公式の導出でお役立ちなので、今回の出番となりました。

指数関数とは

指数関数は、繰り返しの掛け算を表す数学の式です。例えば、「2を3回掛ける」を考えると、これは \(2 \times 2 \times 2\) となり、結果は \(8\) です。数学的には、これを \(2^3 = 8\) と表現します。ここで \(2^3\) の形が指数関数であり、「 \(2\) 」が底、「\(3\)」が指数です。

指数関数は多くの自然現象や科学技術で見られる現象を表すのに非常に重要です。例えば、銀行の複利計算や細菌の増殖など、時間とともに増加する速度が速くなるような現象です。

指数関数はまた、数学において他の多くの概念や公式の基礎ともなっています。特に、対数関数の微分公式の導出には指数関数が不可欠です。対数関数の微分は、対数関数のグラフの傾きを求める計算方法です。この微分公式を理解するためには、指数関数の性質が重要です。

指数関数の重要な性質の一つに、ネイピア数\(e\) (およそ \(2.718\))を底とする指数関数 \(e^x\) は、その微分が自分自身 \(e^x\) と等しくなるというものがあります。

1. 指数関数の公式

$$
a^{x} \times a^{y} = a^{x+y} \tag{1.1}
$$

$$
\frac 1 {a^{x}} = a^{- x} \tag{1.2}
$$

$$
\frac {a^{y}} {a^{x}} = a^{y - x} \tag{1.3}
$$

$$
(a^{x}) ^{y} = a^{xy} \tag{1.4}
$$

2. 指数関数の微分の公式

\(a \gt 0 , a \neq 1 のとき \)

$$
(a^{x})' = a^{x} \log_e {a} \tag{1.5}
$$

特に \(a = e\) のとき

$$
(e^{x})' = e^{x} \tag{1.6}
$$

\(e\) はネイピア数 (自然対数の底)

式 \((1.6)\) にあるように、 \(e^{x}\) は微分しても自分自身になるという特徴は様々なところで応用されていますので、きちんと押さえておきましょう。

おまけ

さいごに、ネイピア数の覚え方です!

2.71828 = 二塁から内野にわたる

どういうシチュエーションでしょうね。それでは、また次回お会いしましょう!


navigation

Read more

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部