[AI数理]対数関数の微分法・前編

[AI数理]対数関数の微分法・前編

おはようございます!(株) Qualiteg 研究部です。

本日から2回にわたって対数関数について学んでいきましょう。
正確にいうと、対数関数の微分法を学びます。

対数関数って何だっけ?

まず、対数関数というのは、「ある数 \( x \) が別の数 \( b \) を何回かけると \( x \) になるか」を調べる方法です。例えば、\( b \) が 2 で \( x \) が 8 の場合、2 を 3 回かけると 8 になります。この場合、数学的には「\( b \) の \( x \) に対する対数」と言います。

これを数式で表すと、次のようになります:

$$
\log_b(x) = y
$$

ここで \( b \) は底(てい)、\( x \) は真数、\( y \) は \( b \) を何回かけたら \( x \) になるかを表す数です。例えば、\( b = 2 \) と \( x = 8 \) の場合、\( y = 3 \) となります。なぜなら、2 を 3 回かけると 8 になるからです。

$$
\log_2(8) = 3
$$

対数関数は「逆」の関数と考えることもできます。つまり、乗算(かけ算)の逆が除算(わり算)であるように、累乗(たとえば 2 の 3 乗は 8)の逆が対数関数です。

なぜ対数関数は重要か?

まず、「なぜ、対数関数を学ぶ必要があるか」を説明します。

対数関数は、機械学習の分類問題での代表的な損失関数である 交差エントロピー関数の式に登場します。

多値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

二値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

ニューラルネットワークの学習では損失関数を最小化するように学習していきますが、損失関数が小さくなる方向(勾配)を求めるため損失関数の微分を求めます。

このように交差エントロピー関数は対数関数を含む関数となっているため、対数関数の微分が必要になります。

本シリーズは、 対数関数の微分法 をマスターすることが目的です。対数関数の微分を理解するために、まず対数関数の基礎をマスターし、それを使って対数関数の微分を学習していきます。

1. 対数関数 \(log\) とは

さて、再度、こんどは数式ベースで対数関数について説明いたしますね。

$$
y = \log_a x
$$

\(a\) を何乗すると \(x\) になるか を求めるのが 対数「 \(\log\) 」です。これを \(a\) を底とする対数関数といいます。

\(y=\log_a x\) のとき \(a^{y} = x\) となります。

また \(y=\log_a x\) は \(y=a^{x}\) の逆関数となります。

\(y=\log_2 x\) で \(x=8\) とすると、 \(y=\log_2 8\) ・・・ \(2\) を何乗すると \(8\) になるかを求めることになるので、答えは \(y=3\) となります。

いかがでしたでしょうか。

思い出してみると(または、今学んでみた感想として)案外とっつきやすやすくないでしょうか。

それでは、また次回お会いしましょう!


navigation

Read more

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation
Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

何度か、WSL にいろんなバージョンのLinux を入れたり消したりしたときに遭遇した現象です ユーザー設定の読み込み中にエラーが発生しました 無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。"icon" を設定するときは、値が画像への有効なファイルパスとなっていることをご確認ください。 が発生するときの原因と対象法のレポートです 原因 使われなくなったゾンビ・プロファイルがWindows Terminal (のキャッシュ)に残り続ける 対処法 このメッセージを解消するには、いったん、プロファイルをリセットする必要がありました。 ※既存プロファイル設定が消える場合があるので留意すること Step1 Windows Terminal を落とす Windows Terminal をいったんすべて落とす Step2 settings.json を消す エクスプローラーで settings.json のあるフォルダに移動しファイルを削除する %LOCALAPPDATA%\Packages\Micros

By Qualiteg プロダクト開発部