[AI数理]対数関数の微分法・前編

[AI数理]対数関数の微分法・前編

おはようございます!(株) Qualiteg 研究部です。

本日から2回にわたって対数関数について学んでいきましょう。
正確にいうと、対数関数の微分法を学びます。

対数関数って何だっけ?

まず、対数関数というのは、「ある数 \( x \) が別の数 \( b \) を何回かけると \( x \) になるか」を調べる方法です。例えば、\( b \) が 2 で \( x \) が 8 の場合、2 を 3 回かけると 8 になります。この場合、数学的には「\( b \) の \( x \) に対する対数」と言います。

これを数式で表すと、次のようになります:

$$
\log_b(x) = y
$$

ここで \( b \) は底(てい)、\( x \) は真数、\( y \) は \( b \) を何回かけたら \( x \) になるかを表す数です。例えば、\( b = 2 \) と \( x = 8 \) の場合、\( y = 3 \) となります。なぜなら、2 を 3 回かけると 8 になるからです。

$$
\log_2(8) = 3
$$

対数関数は「逆」の関数と考えることもできます。つまり、乗算(かけ算)の逆が除算(わり算)であるように、累乗(たとえば 2 の 3 乗は 8)の逆が対数関数です。

なぜ対数関数は重要か?

まず、「なぜ、対数関数を学ぶ必要があるか」を説明します。

対数関数は、機械学習の分類問題での代表的な損失関数である 交差エントロピー関数の式に登場します。

多値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

二値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

ニューラルネットワークの学習では損失関数を最小化するように学習していきますが、損失関数が小さくなる方向(勾配)を求めるため損失関数の微分を求めます。

このように交差エントロピー関数は対数関数を含む関数となっているため、対数関数の微分が必要になります。

本シリーズは、 対数関数の微分法 をマスターすることが目的です。対数関数の微分を理解するために、まず対数関数の基礎をマスターし、それを使って対数関数の微分を学習していきます。

1. 対数関数 \(log\) とは

さて、再度、こんどは数式ベースで対数関数について説明いたしますね。

$$
y = \log_a x
$$

\(a\) を何乗すると \(x\) になるか を求めるのが 対数「 \(\log\) 」です。これを \(a\) を底とする対数関数といいます。

\(y=\log_a x\) のとき \(a^{y} = x\) となります。

また \(y=\log_a x\) は \(y=a^{x}\) の逆関数となります。

\(y=\log_2 x\) で \(x=8\) とすると、 \(y=\log_2 8\) ・・・ \(2\) を何乗すると \(8\) になるかを求めることになるので、答えは \(y=3\) となります。

いかがでしたでしょうか。

思い出してみると(または、今学んでみた感想として)案外とっつきやすやすくないでしょうか。

それでは、また次回お会いしましょう!


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部