[AI数理]対数関数の微分法・前編

[AI数理]対数関数の微分法・前編

おはようございます!(株) Qualiteg 研究部です。

本日から2回にわたって対数関数について学んでいきましょう。
正確にいうと、対数関数の微分法を学びます。

対数関数って何だっけ?

まず、対数関数というのは、「ある数 \( x \) が別の数 \( b \) を何回かけると \( x \) になるか」を調べる方法です。例えば、\( b \) が 2 で \( x \) が 8 の場合、2 を 3 回かけると 8 になります。この場合、数学的には「\( b \) の \( x \) に対する対数」と言います。

これを数式で表すと、次のようになります:

$$
\log_b(x) = y
$$

ここで \( b \) は底(てい)、\( x \) は真数、\( y \) は \( b \) を何回かけたら \( x \) になるかを表す数です。例えば、\( b = 2 \) と \( x = 8 \) の場合、\( y = 3 \) となります。なぜなら、2 を 3 回かけると 8 になるからです。

$$
\log_2(8) = 3
$$

対数関数は「逆」の関数と考えることもできます。つまり、乗算(かけ算)の逆が除算(わり算)であるように、累乗(たとえば 2 の 3 乗は 8)の逆が対数関数です。

なぜ対数関数は重要か?

まず、「なぜ、対数関数を学ぶ必要があるか」を説明します。

対数関数は、機械学習の分類問題での代表的な損失関数である 交差エントロピー関数の式に登場します。

多値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

二値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

ニューラルネットワークの学習では損失関数を最小化するように学習していきますが、損失関数が小さくなる方向(勾配)を求めるため損失関数の微分を求めます。

このように交差エントロピー関数は対数関数を含む関数となっているため、対数関数の微分が必要になります。

本シリーズは、 対数関数の微分法 をマスターすることが目的です。対数関数の微分を理解するために、まず対数関数の基礎をマスターし、それを使って対数関数の微分を学習していきます。

1. 対数関数 \(log\) とは

さて、再度、こんどは数式ベースで対数関数について説明いたしますね。

$$
y = \log_a x
$$

\(a\) を何乗すると \(x\) になるか を求めるのが 対数「 \(\log\) 」です。これを \(a\) を底とする対数関数といいます。

\(y=\log_a x\) のとき \(a^{y} = x\) となります。

また \(y=\log_a x\) は \(y=a^{x}\) の逆関数となります。

\(y=\log_2 x\) で \(x=8\) とすると、 \(y=\log_2 8\) ・・・ \(2\) を何乗すると \(8\) になるかを求めることになるので、答えは \(y=3\) となります。

いかがでしたでしょうか。

思い出してみると(または、今学んでみた感想として)案外とっつきやすやすくないでしょうか。

それでは、また次回お会いしましょう!


navigation

Read more

今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング
【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部