[AI数理]対数関数の微分法・前編

[AI数理]対数関数の微分法・前編

おはようございます!(株) Qualiteg 研究部です。

本日から2回にわたって対数関数について学んでいきましょう。
正確にいうと、対数関数の微分法を学びます。

対数関数って何だっけ?

まず、対数関数というのは、「ある数 \( x \) が別の数 \( b \) を何回かけると \( x \) になるか」を調べる方法です。例えば、\( b \) が 2 で \( x \) が 8 の場合、2 を 3 回かけると 8 になります。この場合、数学的には「\( b \) の \( x \) に対する対数」と言います。

これを数式で表すと、次のようになります:

$$
\log_b(x) = y
$$

ここで \( b \) は底(てい)、\( x \) は真数、\( y \) は \( b \) を何回かけたら \( x \) になるかを表す数です。例えば、\( b = 2 \) と \( x = 8 \) の場合、\( y = 3 \) となります。なぜなら、2 を 3 回かけると 8 になるからです。

$$
\log_2(8) = 3
$$

対数関数は「逆」の関数と考えることもできます。つまり、乗算(かけ算)の逆が除算(わり算)であるように、累乗(たとえば 2 の 3 乗は 8)の逆が対数関数です。

なぜ対数関数は重要か?

まず、「なぜ、対数関数を学ぶ必要があるか」を説明します。

対数関数は、機械学習の分類問題での代表的な損失関数である 交差エントロピー関数の式に登場します。

多値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

二値分類用の交差エントロピー関数

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

ニューラルネットワークの学習では損失関数を最小化するように学習していきますが、損失関数が小さくなる方向(勾配)を求めるため損失関数の微分を求めます。

このように交差エントロピー関数は対数関数を含む関数となっているため、対数関数の微分が必要になります。

本シリーズは、 対数関数の微分法 をマスターすることが目的です。対数関数の微分を理解するために、まず対数関数の基礎をマスターし、それを使って対数関数の微分を学習していきます。

1. 対数関数 \(log\) とは

さて、再度、こんどは数式ベースで対数関数について説明いたしますね。

$$
y = \log_a x
$$

\(a\) を何乗すると \(x\) になるか を求めるのが 対数「 \(\log\) 」です。これを \(a\) を底とする対数関数といいます。

\(y=\log_a x\) のとき \(a^{y} = x\) となります。

また \(y=\log_a x\) は \(y=a^{x}\) の逆関数となります。

\(y=\log_2 x\) で \(x=8\) とすると、 \(y=\log_2 8\) ・・・ \(2\) を何乗すると \(8\) になるかを求めることになるので、答えは \(y=3\) となります。

いかがでしたでしょうか。

思い出してみると(または、今学んでみた感想として)案外とっつきやすやすくないでしょうか。

それでは、また次回お会いしましょう!


navigation

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部