[AI数理]徹底的に交差エントロピー(3)

[AI数理]徹底的に交差エントロピー(3)

おはようございます!(株) Qualiteg 研究部です。

今回は、尤度関数から交差エントロピーを導いていきたいとおもいます!

4章 尤度関数から交差エントロピーを導く

さて、今までは 20回ぶんサイコロを投げて、起こった事象(出た目が1なのか、2なのか、・・・、6なのか) を数えた結果を以下の表のようにまとめました。

では、こんどは、1回ぶんサイコロを投げたときどうのようになるかみてみます。

1回サイコロをなげた結果が 1の目 だった場合は、以下のように書くことができます。
(でた目のところに✔マークをいれただけです)

さて、?だと計算にもっていきづらいので、出た目のところを \(1\) にして、出なかった目は \(0\) と置き換えることにします。

( \(1\) が記載されている目は その目にとっては 頻度 = 確率 = \(1\) と考え、 \(0\) が記載されている目は、その試行では出なかったので、 頻度 = 確率 = \(0\) と考えると理解しやすいかもしれません。)

すると、結果 列は以下のように \(1\) と \(0\) であらわすことができます。

さらに、さきほどまでの表にも書いていたように 結果 列を、ふたたび、 事象が起こる頻度 として \(t\) で表現すると、以下のようになります。

これを再度、対数尤度関数の式で表記すると

$$
\log L=\sum_{k=1}^{6} t_{k} \log y_{k} \tag{4.1}
$$

はい、この 式 \((4.1)\) これは 式 \((3.6)\) とまったく同じです。ただし、裏にある設定は、 1回だけの試行についての対数尤度関数(※) のように解釈できる点が 式 \((3.6)\) と異なる点です。

1回だけの試行についての対数尤度関数 というと、かえってやっかいですが、よくかんがえてみると、尤度というのはそもそも複数の確率の積になっているため、1回の試行についてのだけに着目したときの対数尤度関数は 尤度 というよりも 指数つきで表現された確率に対数をとっただけのもので実質、ただの 確率 です。では、なぜこのようなまどろっこしい解釈をわざわざするかというと、後半にでてくる 交差エントロピー の式への呼び水とするためです。

では、「1の目が出る」という事象が起こった 1回だけの試行について、 式 \((3.7)\) を実際に計算してみましょう。

$$
\begin{aligned}
\log L= &t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3} + t_{4} \log y_{4} + t_{5} \log y_{5} + t_{6} \log y_{6} &
\
= &1 \cdot \log y_{1} + 0 \cdot \log y_{2} + 0 \cdot \log y_{3} + 0 \cdot \log y_{4} + 0 \cdot \log y_{5} + 0 \cdot \log y_{6}
\end{aligned}
$$

頻度 \(t\) は 1つだけ \(1\) で、あとは \(0\) になるので、このようにシンプルな計算となりますね。

今回はサイコロだったので 6個の事象 が対象でしたが、これを \(K\) 個の事象というふうに一般化すると

$$
\log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.2}
$$

のように書くことができます。

この式 \((4.2)\) は 1件あたりの対数尤度関数、もうすこし統計学的な言い方をすれば 1つの標本データ あたりの 対数尤度関数 となります。

対数尤度関数は大きくなるほど、確からしいパラメータ \(y_{k}\) を持つことになりますが、 Deep Learning 等の機械学習では損失関数が 小さくなるように 学習させていきますので、式 \((4.2)\) にマイナスをつけた式 \((4.3)\) のことを 交差エントロピー関数 と呼びます。

交差エントロピー関数(標本データ1件ぶんバージョン)

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3}
$$

これで交差エントロピー関数を導くことができました。

めでたしめでたし👏

え? ちがう?

伏線の回収忘れ?

「サイコロの各目の確率 \(y\) の話はどうなった?」

「対数尤度関数の導関数が \(0\) になる点をみつけて、サイコロの各目がでる確率求めないの?]

「対数尤度関数の微分して \(0\) になった点は極大または極小であって、最大ではないでしょう?」

「いやいや、待て、尤度関数に対数つけたのは、微分しやすくなるからでしょう。対数尤度関数は微分しないわけ?」

はい、おっしゃるとおりですね、この点については、「補足」にて別途説明いたします。

といいますのも、サイコロの各目がでる確率は最尤推定の手法にて求められますが、本シリーズは「交差エントロピー関数」を導き出す部分が主眼なので、「交差エントロピー」がうっすら見えてきた今、サイコロの目の確率推定トピックは少しあとまわしにさせていただき、もうすこし交差エントロピーを掘り下げてみたいとおもいますので、おつきあいくださいませ!

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング