[AI数理]徹底的に交差エントロピー(3)

[AI数理]徹底的に交差エントロピー(3)

おはようございます!(株) Qualiteg 研究部です。

今回は、尤度関数から交差エントロピーを導いていきたいとおもいます!

4章 尤度関数から交差エントロピーを導く

さて、今までは 20回ぶんサイコロを投げて、起こった事象(出た目が1なのか、2なのか、・・・、6なのか) を数えた結果を以下の表のようにまとめました。

では、こんどは、1回ぶんサイコロを投げたときどうのようになるかみてみます。

1回サイコロをなげた結果が 1の目 だった場合は、以下のように書くことができます。
(でた目のところに✔マークをいれただけです)

さて、?だと計算にもっていきづらいので、出た目のところを \(1\) にして、出なかった目は \(0\) と置き換えることにします。

( \(1\) が記載されている目は その目にとっては 頻度 = 確率 = \(1\) と考え、 \(0\) が記載されている目は、その試行では出なかったので、 頻度 = 確率 = \(0\) と考えると理解しやすいかもしれません。)

すると、結果 列は以下のように \(1\) と \(0\) であらわすことができます。

さらに、さきほどまでの表にも書いていたように 結果 列を、ふたたび、 事象が起こる頻度 として \(t\) で表現すると、以下のようになります。

これを再度、対数尤度関数の式で表記すると

$$
\log L=\sum_{k=1}^{6} t_{k} \log y_{k} \tag{4.1}
$$

はい、この 式 \((4.1)\) これは 式 \((3.6)\) とまったく同じです。ただし、裏にある設定は、 1回だけの試行についての対数尤度関数(※) のように解釈できる点が 式 \((3.6)\) と異なる点です。

1回だけの試行についての対数尤度関数 というと、かえってやっかいですが、よくかんがえてみると、尤度というのはそもそも複数の確率の積になっているため、1回の試行についてのだけに着目したときの対数尤度関数は 尤度 というよりも 指数つきで表現された確率に対数をとっただけのもので実質、ただの 確率 です。では、なぜこのようなまどろっこしい解釈をわざわざするかというと、後半にでてくる 交差エントロピー の式への呼び水とするためです。

では、「1の目が出る」という事象が起こった 1回だけの試行について、 式 \((3.7)\) を実際に計算してみましょう。

$$
\begin{aligned}
\log L= &t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3} + t_{4} \log y_{4} + t_{5} \log y_{5} + t_{6} \log y_{6} &
\
= &1 \cdot \log y_{1} + 0 \cdot \log y_{2} + 0 \cdot \log y_{3} + 0 \cdot \log y_{4} + 0 \cdot \log y_{5} + 0 \cdot \log y_{6}
\end{aligned}
$$

頻度 \(t\) は 1つだけ \(1\) で、あとは \(0\) になるので、このようにシンプルな計算となりますね。

今回はサイコロだったので 6個の事象 が対象でしたが、これを \(K\) 個の事象というふうに一般化すると

$$
\log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.2}
$$

のように書くことができます。

この式 \((4.2)\) は 1件あたりの対数尤度関数、もうすこし統計学的な言い方をすれば 1つの標本データ あたりの 対数尤度関数 となります。

対数尤度関数は大きくなるほど、確からしいパラメータ \(y_{k}\) を持つことになりますが、 Deep Learning 等の機械学習では損失関数が 小さくなるように 学習させていきますので、式 \((4.2)\) にマイナスをつけた式 \((4.3)\) のことを 交差エントロピー関数 と呼びます。

交差エントロピー関数(標本データ1件ぶんバージョン)

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3}
$$

これで交差エントロピー関数を導くことができました。

めでたしめでたし👏

え? ちがう?

伏線の回収忘れ?

「サイコロの各目の確率 \(y\) の話はどうなった?」

「対数尤度関数の導関数が \(0\) になる点をみつけて、サイコロの各目がでる確率求めないの?]

「対数尤度関数の微分して \(0\) になった点は極大または極小であって、最大ではないでしょう?」

「いやいや、待て、尤度関数に対数つけたのは、微分しやすくなるからでしょう。対数尤度関数は微分しないわけ?」

はい、おっしゃるとおりですね、この点については、「補足」にて別途説明いたします。

といいますのも、サイコロの各目がでる確率は最尤推定の手法にて求められますが、本シリーズは「交差エントロピー関数」を導き出す部分が主眼なので、「交差エントロピー」がうっすら見えてきた今、サイコロの目の確率推定トピックは少しあとまわしにさせていただき、もうすこし交差エントロピーを掘り下げてみたいとおもいますので、おつきあいくださいませ!

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部