[AI数理]徹底的に交差エントロピー(3)

[AI数理]徹底的に交差エントロピー(3)

おはようございます!(株) Qualiteg 研究部です。

今回は、尤度関数から交差エントロピーを導いていきたいとおもいます!

4章 尤度関数から交差エントロピーを導く

さて、今までは 20回ぶんサイコロを投げて、起こった事象(出た目が1なのか、2なのか、・・・、6なのか) を数えた結果を以下の表のようにまとめました。

では、こんどは、1回ぶんサイコロを投げたときどうのようになるかみてみます。

1回サイコロをなげた結果が 1の目 だった場合は、以下のように書くことができます。
(でた目のところに✔マークをいれただけです)

さて、?だと計算にもっていきづらいので、出た目のところを \(1\) にして、出なかった目は \(0\) と置き換えることにします。

( \(1\) が記載されている目は その目にとっては 頻度 = 確率 = \(1\) と考え、 \(0\) が記載されている目は、その試行では出なかったので、 頻度 = 確率 = \(0\) と考えると理解しやすいかもしれません。)

すると、結果 列は以下のように \(1\) と \(0\) であらわすことができます。

さらに、さきほどまでの表にも書いていたように 結果 列を、ふたたび、 事象が起こる頻度 として \(t\) で表現すると、以下のようになります。

これを再度、対数尤度関数の式で表記すると

$$
\log L=\sum_{k=1}^{6} t_{k} \log y_{k} \tag{4.1}
$$

はい、この 式 \((4.1)\) これは 式 \((3.6)\) とまったく同じです。ただし、裏にある設定は、 1回だけの試行についての対数尤度関数(※) のように解釈できる点が 式 \((3.6)\) と異なる点です。

1回だけの試行についての対数尤度関数 というと、かえってやっかいですが、よくかんがえてみると、尤度というのはそもそも複数の確率の積になっているため、1回の試行についてのだけに着目したときの対数尤度関数は 尤度 というよりも 指数つきで表現された確率に対数をとっただけのもので実質、ただの 確率 です。では、なぜこのようなまどろっこしい解釈をわざわざするかというと、後半にでてくる 交差エントロピー の式への呼び水とするためです。

では、「1の目が出る」という事象が起こった 1回だけの試行について、 式 \((3.7)\) を実際に計算してみましょう。

$$
\begin{aligned}
\log L= &t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3} + t_{4} \log y_{4} + t_{5} \log y_{5} + t_{6} \log y_{6} &
\
= &1 \cdot \log y_{1} + 0 \cdot \log y_{2} + 0 \cdot \log y_{3} + 0 \cdot \log y_{4} + 0 \cdot \log y_{5} + 0 \cdot \log y_{6}
\end{aligned}
$$

頻度 \(t\) は 1つだけ \(1\) で、あとは \(0\) になるので、このようにシンプルな計算となりますね。

今回はサイコロだったので 6個の事象 が対象でしたが、これを \(K\) 個の事象というふうに一般化すると

$$
\log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.2}
$$

のように書くことができます。

この式 \((4.2)\) は 1件あたりの対数尤度関数、もうすこし統計学的な言い方をすれば 1つの標本データ あたりの 対数尤度関数 となります。

対数尤度関数は大きくなるほど、確からしいパラメータ \(y_{k}\) を持つことになりますが、 Deep Learning 等の機械学習では損失関数が 小さくなるように 学習させていきますので、式 \((4.2)\) にマイナスをつけた式 \((4.3)\) のことを 交差エントロピー関数 と呼びます。

交差エントロピー関数(標本データ1件ぶんバージョン)

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3}
$$

これで交差エントロピー関数を導くことができました。

めでたしめでたし👏

え? ちがう?

伏線の回収忘れ?

「サイコロの各目の確率 \(y\) の話はどうなった?」

「対数尤度関数の導関数が \(0\) になる点をみつけて、サイコロの各目がでる確率求めないの?]

「対数尤度関数の微分して \(0\) になった点は極大または極小であって、最大ではないでしょう?」

「いやいや、待て、尤度関数に対数つけたのは、微分しやすくなるからでしょう。対数尤度関数は微分しないわけ?」

はい、おっしゃるとおりですね、この点については、「補足」にて別途説明いたします。

といいますのも、サイコロの各目がでる確率は最尤推定の手法にて求められますが、本シリーズは「交差エントロピー関数」を導き出す部分が主眼なので、「交差エントロピー」がうっすら見えてきた今、サイコロの目の確率推定トピックは少しあとまわしにさせていただき、もうすこし交差エントロピーを掘り下げてみたいとおもいますので、おつきあいくださいませ!

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング
【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部
Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部