[AI数理]徹底的に交差エントロピー(3)

[AI数理]徹底的に交差エントロピー(3)

おはようございます!(株) Qualiteg 研究部です。

今回は、尤度関数から交差エントロピーを導いていきたいとおもいます!

4章 尤度関数から交差エントロピーを導く

さて、今までは 20回ぶんサイコロを投げて、起こった事象(出た目が1なのか、2なのか、・・・、6なのか) を数えた結果を以下の表のようにまとめました。

では、こんどは、1回ぶんサイコロを投げたときどうのようになるかみてみます。

1回サイコロをなげた結果が 1の目 だった場合は、以下のように書くことができます。
(でた目のところに✔マークをいれただけです)

さて、?だと計算にもっていきづらいので、出た目のところを \(1\) にして、出なかった目は \(0\) と置き換えることにします。

( \(1\) が記載されている目は その目にとっては 頻度 = 確率 = \(1\) と考え、 \(0\) が記載されている目は、その試行では出なかったので、 頻度 = 確率 = \(0\) と考えると理解しやすいかもしれません。)

すると、結果 列は以下のように \(1\) と \(0\) であらわすことができます。

さらに、さきほどまでの表にも書いていたように 結果 列を、ふたたび、 事象が起こる頻度 として \(t\) で表現すると、以下のようになります。

これを再度、対数尤度関数の式で表記すると

$$
\log L=\sum_{k=1}^{6} t_{k} \log y_{k} \tag{4.1}
$$

はい、この 式 \((4.1)\) これは 式 \((3.6)\) とまったく同じです。ただし、裏にある設定は、 1回だけの試行についての対数尤度関数(※) のように解釈できる点が 式 \((3.6)\) と異なる点です。

1回だけの試行についての対数尤度関数 というと、かえってやっかいですが、よくかんがえてみると、尤度というのはそもそも複数の確率の積になっているため、1回の試行についてのだけに着目したときの対数尤度関数は 尤度 というよりも 指数つきで表現された確率に対数をとっただけのもので実質、ただの 確率 です。では、なぜこのようなまどろっこしい解釈をわざわざするかというと、後半にでてくる 交差エントロピー の式への呼び水とするためです。

では、「1の目が出る」という事象が起こった 1回だけの試行について、 式 \((3.7)\) を実際に計算してみましょう。

$$
\begin{aligned}
\log L= &t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3} + t_{4} \log y_{4} + t_{5} \log y_{5} + t_{6} \log y_{6} &
\
= &1 \cdot \log y_{1} + 0 \cdot \log y_{2} + 0 \cdot \log y_{3} + 0 \cdot \log y_{4} + 0 \cdot \log y_{5} + 0 \cdot \log y_{6}
\end{aligned}
$$

頻度 \(t\) は 1つだけ \(1\) で、あとは \(0\) になるので、このようにシンプルな計算となりますね。

今回はサイコロだったので 6個の事象 が対象でしたが、これを \(K\) 個の事象というふうに一般化すると

$$
\log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.2}
$$

のように書くことができます。

この式 \((4.2)\) は 1件あたりの対数尤度関数、もうすこし統計学的な言い方をすれば 1つの標本データ あたりの 対数尤度関数 となります。

対数尤度関数は大きくなるほど、確からしいパラメータ \(y_{k}\) を持つことになりますが、 Deep Learning 等の機械学習では損失関数が 小さくなるように 学習させていきますので、式 \((4.2)\) にマイナスをつけた式 \((4.3)\) のことを 交差エントロピー関数 と呼びます。

交差エントロピー関数(標本データ1件ぶんバージョン)

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3}
$$

これで交差エントロピー関数を導くことができました。

めでたしめでたし👏

え? ちがう?

伏線の回収忘れ?

「サイコロの各目の確率 \(y\) の話はどうなった?」

「対数尤度関数の導関数が \(0\) になる点をみつけて、サイコロの各目がでる確率求めないの?]

「対数尤度関数の微分して \(0\) になった点は極大または極小であって、最大ではないでしょう?」

「いやいや、待て、尤度関数に対数つけたのは、微分しやすくなるからでしょう。対数尤度関数は微分しないわけ?」

はい、おっしゃるとおりですね、この点については、「補足」にて別途説明いたします。

といいますのも、サイコロの各目がでる確率は最尤推定の手法にて求められますが、本シリーズは「交差エントロピー関数」を導き出す部分が主眼なので、「交差エントロピー」がうっすら見えてきた今、サイコロの目の確率推定トピックは少しあとまわしにさせていただき、もうすこし交差エントロピーを掘り下げてみたいとおもいますので、おつきあいくださいませ!

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部
CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

株式会社Qualitegは、2025年10月14日(火)~17日(金)に幕張メッセで開催される「CEATEC 2025」に出展いたします。今回の出展では、当社が開発したフォトリアリスティックAIアバター技術「MotionVox🄬」をはじめ、最新のAI技術とビジネスイノベーションソリューションをご紹介いたします。 出展概要 * 会期:2025年10月14日(火)~10月17日(金) * 会場:幕張メッセ * 出展エリア:ネクストジェネレーションパーク * ブース番号:ホール6 6H207 * CEATEC内特設サイト:https://www.ceatec.com/nj/exhibitor_detail_ja?id=1915 見どころ:最先端AI技術を体感できる特別展示 1. フォトリアルAIアバター「MotionVox🄬」 テキスト入力だけで、まるで本物の人間のような動画を生成できる革新的なAIアバターシステムです。 MotionVox🄬は自社開発している「Expression Aware🄬」技術により日本人の演者データを基に開発された、

By Qualiteg ニュース
その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは! 本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。 ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。 エラーメッセージの詳細 [E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load

By Qualiteg プロダクト開発部
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg コンサルティング