[自作日記9] AI研究用GPUマシンパーツと組み立て開始!

[自作日記9] AI研究用GPUマシンパーツと組み立て開始!


昨日、秋葉原で合計41.5万円分のGPUマシンのパーツを購入してきましたのでご報告します!

GPUマシンパーツ

AI用研究用GPUマシンパーツ一式

早速、組み立てていきます!

組み立てに使う工具

周辺パーツは別に、以下のような工具があると便利です

項目 使いどころ、Tips
プラスドライバー普通サイズ ケースの組み立てで使用。
マイナスドライバー ケースの組み立てで使用。精密ドライバーよりは大きいが、通常サイズより少し小さめのもの。
静電気防止手袋 組み立てで必須。手にフィットするもの。
ねじつかみようピンセット ネジをネジ穴にいれるときに、ネジをつまんでおくのに便利。指が入りにくい場所などに。
ラジオペンチ それほど出番はなさそうだが、ネジ穴つぶしたとき対策などあると精神的におちつく。
ヘッドライト 頭にまくやつ。両手をつかって奥深くをみながら作業するときなど、視野を明るくしてくれて便利。
ライト 他のパーツの陰にかくれてしまうような奥深い部分の作業のとき、 ヘッドライトとあわせてあると便利。

では、さっそく組み立てを開始します!

STEP 1. PCケースに電源を装着

使用したケースは 【 Fractal Design Focus G white 】です

  • グラボサイズ:最長380mmのグラフィックス
  • ファン:大きなエアフローを最大限確保するために合計6箇所のファン配置(デフォルトで2基の120mm ファンをフロントに搭載。リアx1、トップx2、ボトムx1)
  • 5インチベイ:パネル前面に 2基の5インチベイ(防振対応ドライブベイ)
  • 2.5インチマウント:内部に 2.5インチマウント

電源ユニットをケースに設置する

電源ユニットは 【Seasonic製 80PLUS Titanium認証 PRIME TX ATX電源 PRIME-TX 850W】 です

  • まず電源ユニットをケースに設置します

電源ユニットの端子側はこのようになっており、M/B と書いてあるのはマザーボード接続用、CPU/PCI-E は CPUとPCI Express拡張ボード用の電源となっています。Peripheral と書いてあるのは SATA など周辺装置用の電源です。

まず、この電源ユニットをPCケースにねじ止めしていきましょう

PCケース前面にある5インチベイにSATAリムーバルケースを設置

私のマシンはちょっと欲張りして、デュアルブートができるようにしようとしているので、デュアルブート用のSSDを収納する、SATAリムーバルケースを設置します。

単にデュアルブートしたいだけなら、リムバールケースは不要なのですが、私は Ubuntu,Windows,FreeBSDなど複数のOSを切り替えようとおもっているため、このようにSSDを簡単に着脱できるようにしています。

リムーバルケースは 【OWLTECH 5.25インチベイ用ダイレクトリムーバルケース】を使用します。これを5インチベイに入れます。

5インチベイとに、リムーバルケースを入れる前に、PCケース側の5インチベイのフタをフロントパネルからはがす必要があります。このとき、ツメを背面からマイナスドライバー等つかって解除してはずしてやります。

その後、5インチベイ用のSATAリムーバルケースをフロント側から差し込みます。

リムーバルケースが5インチベイにおさまったら今度は信号ケーブルと電源コネクタを接続します。

今回使用するのは 2.5インチSSDなので、2.5インチの信号ケーブルを以下のように差し込みます。またSATA電源用コネクタを以下のように差し込みます。

つづいて、マザーボードまわりのセットアップをしていきましょう。

次の日記につづきます


navigation

Read more

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング