ChatGPTによるAI革命と今後の展望

ChatGPTによるAI革命と今後の展望
Photo by Drew Dizzy Graham / Unsplash

今日は ChatGPT による革命と今後の展望について書いてみたいとおもいます。

ChatGPTはほとんどの業界に大きな影響を与えているのは周知のとおりです。

このテキストベースのAIは、業務の自動化と効率化に貢献しており、その影響は広範囲に及ぶと予想されます。しかし、ChatGPTの成長と進化の途上には、いくつかの課題が存在しています。ここでは、ChatGPTが引き起こすAI革命、その業界への影響、そして将来への展望について掘り下げていきたいとおもいます。

ChatGPTによる業界の変革

ChatGPTは、既に世の中の9割の業界で劇的な変化をもたらしているといわれています。このAI技術は、顧客サービスからマーケティング、保険、HR、さらには開発まで、幅広い分野で業務の自動化と効率化を実現しています。

(我々の開発でもこれまで人間がやっていた仕様書定義・整理や単体テスト設計などで絶大な効果をあげています。)

例えば、顧客サービスでは、ChatGPTを用いたチャットボットが24時間体制で顧客の問い合わせに応じることが可能になり、人的リソースの負担を大幅に軽減しています。また、コンテンツ作成やコードの自動生成など、従来、人間らしい創造的なタスクといわれていた分野にもChatGPTが活躍しており、業務の質とスピードの向上に貢献しています。

成長の限界と今後の方向性

しかしながら、ChatGPTの成長には、公開データのみを利用した学習に限界があるという疑問が残ります。約13兆トークンのデータで学習されたChatGPTも、インターネットやWikipedia、有料コーパスなどの公開データに依存しています。これらのデータには、必然的に限界があり、AIの理解と応用の幅を制限しています。

モデルサイズを大きくすると賢くなる というスケーリング法則が正しいとすると、賢くするためにはモデルサイズを大きくしなくてはならず、モデルサイズが大きいということは、それだけ多くのパラメータ・ウェイトが満腹になるだけのデータを食べさせてあげる必要があるからです。

データの量を増やすには幅方向と深さ方向があります。幅方向はよりWikipediaに代表されるような広範な知識。一方、深さ方向は特定の領域に関する専門性の高い知識。これら知識を含むデータをどれだけ集められるかですが、直近のムーブメントは深さ方向に焦点が当たるでしょう。

つまり、”特定業界に特化”して、その業界データ、または、企業固有データを取り込んで、どのように成長させていくか、という軸の動きが活発になっていくと考えています。

企業固有のデータや専門的な業界データを学習に組み込むことで、ChatGPTはより具体的で専門的な知識を持つことができ、特定業界におけるより高度なタスクの実行が可能になります。

業界特化(ドメイン固有)への進化

ChatGPTが多くの業界で広く受け入れられる中で、各業界特有のニーズへの対応が求められています。初期段階では、ChatGPTは一般的なタスクで広く活躍しますが、企業は自社固有のデータや業界特有の課題解決を求めるようになります。たとえば、金融業界では、規制遵守やリスク管理に関する深い理解が求められ、医療業界では、患者のプライバシーを保護しながら、個々の医療記録を分析する能力が必要になります。

オープンLLM勢の影響

AI界隈、特にオープンLLM(Large Language Models)に焦点を当てた時、OpenAI、Anthropic、Cohereといった大手LLMプロバイダーだけでなく、オープンソースのLLMプロジェクトにも目を向ける価値があります。我々にも深く関係のあるオープンLLMプロジェクトはどうなるでしょうか。私たちは、「業界特化」がオープンLLM勢にとっての大きなチャンスになると考えています。

現在、多くのオープンLLMプロバイダーは、性能をChatGPTに近づける、あるいはそれを超えることに注力しています。しかし、"一般知識"における一定レベルの性能達成後、次なる焦点は、特定の業界や領域に特化したモデルの構築能力に移ります。ここでのキーポイントは、特定業界の深い知識を活かした事前学習の効率化と、それに伴うファインチューニングのバランスです。短い開発期間(TAT: Turn Around Time)でこれらを実現することが、技術的な挑戦となります。

たとえば、医療や法律などの専門分野では、専門用語の理解と適用が必須となります。これらの分野での高度なタスクをこなせるLLMを開発するためには、専門家の知識を取り入れた訓練データの収集や、特定分野での事例に基づいたファインチューニングが不可欠です。さらに、ファイナンスやエネルギー分野では、市場の動向や規制の変更にタイムリー・迅速に対応する能力も求められるでしょう。これらの業界特化モデルの開発には、業界固有のデータ収集や、リアルタイムのデータ処理能力が重要となります。

これらの進化に伴い、ChatGPTが占める市場は一強ではなくなり、多様な「業界特化」モデルを提供できるプロバイダーが台頭してくると(期待を込めて^^)予想しています。これらのモデルを支えるためには、強力な推論プラットフォームと、推論アプリケーションを支える基盤・フレームワークが不可欠です。当社が提供するChatStreamや関連サービスは、この新たな時代における業界特化モデルの開発と展開を強力にサポートします。これにより、顧客はタイムリーに、そして柔軟に業界特化の問題解決を行うことが可能となります。当社の技術が、次世代のLLMの展開において、どのように価値を提供できるかを考えることは、非常に刺激的です。そして楽しい!


navigation

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第5回 ブラウザ設定と認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第5回 ブラウザ設定と認証

こんにちは、今回はシリーズ第5回「ブラウザ設定と認証」について解説いたします! さて、前回(第4回)では、プロキシサーバーをドメインに参加させることで、ChatGPTやClaudeへのアクセスを「誰が」行ったかを確実に特定する仕組みを解説しました。「信頼の連鎖」の概念や、Windows版Squidなら1時間で構築できる環境、Negotiate/NTLM/Basicという3段階の認証フォールバック機構について理解いただけたかと思います。 しかし、せっかくサーバー側で完璧な統合Windows認証環境を構築しても、ブラウザ側の設定が適切でなければ、ユーザーには毎回パスワード入力ダイアログが表示されてしまいます。 「Edgeだと自動でログインできるのに、Chromeだとパスワードを聞かれる」 「同じサーバーなのにURLの書き方で動作が違う」 これらはヘルプデスクに寄せられる典型的な問い合わせです。(ただ、業務に好きなブラウザ使っていいよ、という企業はそんなに多くはないとおもいます) 今回は、統合Windows認証がブラウザでどのように動作するのか、その仕組みから各ブラウザ(Edge/

By Qualiteg AIセキュリティチーム, Qualiteg コンサルティング
スライドパズルを解くAIから学ぶ、「考える」の正体

スライドパズルを解くAIから学ぶ、「考える」の正体

こんにちは! 「このパズル、AIの教科書に載ってるらしいよ」 子供の頃に遊んだスライドパズル。いや、大人が遊んでも楽しいです。 数字のタイルをカチャカチャ動かして揃えるあれです。実はこのシンプルなパズルが、AI研究の出発点のひとつだったって知ってました? 今回は、このパズルを題材に「AIがどうやって考えているのか」を解き明かしていきます。しかも、ここで使われている手法は、Google Mapsの経路探索からChatGPTまで、現代の様々な技術のベースになっているんです。 まず遊んでみよう 理屈の前に、まずは感覚を思い出してみてください。 最初に shuffle をクリックすると、配置がシャッフルされゲームを開始できます。 ちなみに必ず解くことができるようになっていますが、慣れていないとそれなりに難しいかもしれません。 どうでしょう? 何手でクリアできましたか? クリアできなくても大丈夫です。記事後半で、実際にAIが解いてくれる機能つきゲームも掲載しています^^ 以下は動画です。本ブログで紹介するアルゴリズムで実際にパズルを解く様子をご覧いただけます

By Qualiteg 研究部
楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部
企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

こんにちは! ChatGPTやClaudeといった生成AIサービスが業務に浸透し始めた今、 「AIに機密情報を送ってしまうリスク」 が新たなセキュリティ課題として浮上しています。 この課題に向き合う中で、私たちは改めて「企業のセキュリティアーキテクチャはどう変遷してきたのか」を振り返る機会がありました。 すると、ある疑問が浮かんできます。 「なんでこんなに複雑になってるんだっけ?」 企業のセキュリティ担当者なら、一度は思ったことがあるのではないでしょうか。 アルファベット3〜4文字の製品が乱立し、それぞれが微妙に重複した機能を持ち、設定は複雑化し、コストは膨らみ続けています。 当社ではAIセキュリティ関連プロダクトをご提供しておりますが、AI時代のセキュリティを考える上でも、この歴史を理解することは重要ではないかと考えました。 本記事では、企業ネットワークセキュリティの変遷を振り返りながら、「なぜこうなったのか」を整理してみたいと思います。 第1章:観測点を集約できた時代 ― オンプレAD + Proxy(〜2010年代前半) 統制しやすかったモデル かつ

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム