[AI数理]対数関数の微分法・後編

[AI数理]対数関数の微分法・後編

おはようございます!(株) Qualiteg 研究部です。

本日は対数関数の微分法の後編です!

今回で、対数関数の微分法をマスターしましょう!

2. 対数関数の公式

まず、対数関数の公式をおさえておきます。あとで対数関数の微分法の導出で使用します

\(a^{0} = 1\) 、つまり \(a\) を \(0\) 乗すると \(1\) となるため

$$
\log_a 1 = 0 \tag{2.1}
$$

\(a^{1} = a\) 、つまり \(a\) を \(1\) 乗すると \(a\) となるため

$$
\log_a a = 1 \tag{2.2}
$$

積の対数

$$
\log_a (X \times Y) = \log_a X + \log_a Y \tag{2.3}
$$

商の対数

$$
\log_a ( \frac Y X) = \log_a Y - \log_a X \tag{2.4}
$$

 

式 \((2.4)\) で \(Y=1\) のとき、 \(log_a Y = log_a 1 = 0\) となるので

$$
\log_a ( \frac 1 X) = -\log_a X \tag{2.5}
$$

累乗の対数

$$
\log_a (X^{Y}) = Y \log_a X \tag{2.6}
$$

 

底の変換公式

$$
\log_a b = \frac {\log_c b} {\log_c a} \tag{2.7}
$$

\(c\) は新しい底。 \(a\) と \(b\) が以下のように移動するのが底の変換公式です。

さらっと書きましたが、このテクニックは今回に限らず色々なところで役立ちますので、↓を忘れないようにしましょう。

3. 対数関数の微分

さて、以下が対数関数の微分の公式です。

対数関数の微分の公式

$$
f(x) = \log_a x
$$

を \(x\) で微分した \(f'(x)\) は

$$
f'(x) = \frac{1}{x \log_e a} \tag{3.1}
$$

となります


\(e\) を底とする対数関数

$$
g(x) = \log_e x
$$

を \(x\) で微分した \(g'(x)\) は

$$
g'(x) = \frac{1}{x} \tag{3.2}
$$

となります。

なぜなら式 \((3.1)\) の \(a\) に ネイピア数 \(e\) を代入して \(g'(x) = \frac{1}{x \log_e e}\) であるが、 \(\log_e e = 1\) であるので \(g'(x) = \frac{1}{x}\) が導けるというわけす。

4. 対数関数の微分を導出する

さて、先に微分の公式を示してしまいましたが、そこまでは前菜。

ここがメインディッシュです。

前述した対数関数の微分の公式 式 \((3.1)\) を、いままで見てきた道具を使って導き出していきましょう

$$
f(x) = \log_a x
$$

を微分の公式にあてはめると

$$
\begin{aligned}
f'(x) = &\lim_{h \to 0} \frac {f(x+h)-f(x)} {h}& \
=& \lim_{h \to 0} \frac {\log_a (x+h) - \log_a x} {h} &\
\end{aligned}
$$

となるので、 \(\frac {1}{h}\) をつかった表現にすると

$$
f'(x) = \lim_{h \to 0} \frac {1} {h} (\log_a (x+h) - \log_a x) \tag{4.1}
$$

となります。

ここで、

\((x+h) = Y\)、 \(x = X\) と置くと

$$
\log_a (x+h) - \log_a x = \log_a Y - \log_a X
$$

となります。

商の対数 の公式 \((2.4)\)

$$
\log_a ( \frac Y X) = \log_a Y - \log_a X \tag{2.4}
$$

を活用すると \(\log_a Y - \log_a X\) は \(\log_a ( \frac Y X)\) となるので

ここまでの展開を列挙すると

$$
\begin{aligned}
&\log_a (x+h) - \log_a x&\
= &\log_a Y - \log_a X& \
= &\log_a ( \frac Y X)&
\end{aligned}
$$

となります。

ここで、 \(X = x\) と \(Y= (x+h)\) だったので、

$$
\begin{aligned}
\log_a ( \frac Y X)= \log_a ( \frac {x+h}{x})\
\end{aligned}
$$

となるので、ここまでの展開を再度列挙すると

$$
\begin{aligned}
&\log_a (x+h) - \log_a x&\
= &\log_a Y - \log_a X& \
= &\log_a ( \frac Y X)&\
= &\log_a ( \frac {x+h}{x})&
\end{aligned}
$$

となります。

これを式 \((4.1)\) に反映すると、

$$
f'(x) = \lim_{h \to 0} \frac {1} {h} (\log_a (x+h) - \log_a x) = \lim_{h \to 0} \frac {1} {h} (\log_a ( \frac {x+h}{x})) \tag{4.2}
$$

となります。

累乗の対数 の公式 \((2.6)\) より \(Y \log_a X = \log_a (X^{Y})\) なので、\(Y = \frac {1}{h}\) 、 \(X=\frac {x+h}{x}\) とおくと

$$
\begin{aligned}
f'(x) = &\lim_{h \to 0} \frac {1} {h} (\log_a ( \frac {x+h}{x}))
= \lim_{h \to 0} Y (\log_a X)
= \lim_{h \to 0} (\log_a(X^{Y}))&\
\
&となるので、X と Y を戻すと、&\
\
& \lim_{h \to 0} Y (\log_a X) = \lim_{h \to 0} (\log_a(\frac {x+h}{x})^\frac {1} {h}) となります。& \
\
さらに &\frac {x+h}{x} = 1 + \frac {h}{x} なので、&\
\
&\lim_{h \to 0} (\log_a(\frac {x+h}{x})^\frac {1} {h}) = \lim_{h \to 0} (\log_a(1 + \frac {h}{x})^\frac {1} {h})&\
\
&さらに、 \frac{h}{x} = t と置き換えると、&\
&\lim_{h \to 0} →\lim_{t \to 0} となり、 \frac {1} {h} → \frac {1} {tx} となるため &\
\
&\lim_{h \to 0} (\log_a(1 + \frac {h}{x})^\frac {1} {h}) = \lim_{t \to 0} (\log_a(1 + t)^{\frac {1} {tx}}) = \lim_{t \to 0} (\log_a(1 + t)^{\frac {1} {t} \cdot \frac {1} {x}})&\
\end{aligned}
$$

指数関数の公式1.4より \((a^{x})^{y} = a^{xy}\) なので、

$$
\begin{aligned}
f'(x) = &\lim_{t \to 0} (\log_a(1 + t)^{\frac {1} {t} \cdot \frac {1} {x}}) = \lim_{t \to 0} (\log_a ((1 + t)^{\frac {1} {t}})^{\frac {1} {x}})\&
\
\end{aligned}
$$

$$
\begin{aligned}
上式で & \lim_{t \to 0} (1 + t)^{\frac {1}{t}} を e とすると &\
f'(x)=&\lim_{t \to 0} (\log_a ((1 + t)^{\frac {1} {t}})^{\frac {1} {x}})=
\log_a e^{\frac {1}{x}}&
\end{aligned}
$$

さらに 累乗の対数 の公式 \((2.6)\) より
\(\log_a (X^{Y}) = Y \log_a X\) なので、 \(Y = \frac {1}{x}\) 、 \(X = e\) とおくと

$$
f'(x) = \log_a e^{\frac {1}{x}} = \frac{1}{x} \log_a {e} \tag{4.3}
$$

ここで式 \((4.3)\) にある \(\log_a {e}\) に着目する

底の変換公式 式 \((2.7)\) より \(\log_a b = \frac {\log_c b} {\log_c a}\) であるので、 \(b = e\) 、 \(c=e\) とすると

$$
\begin{aligned}
\log_a e = \frac {\log_e e}{\log_e a}
\end{aligned}
$$

となります。

$$
\begin{aligned}
\log_e e = 1 なので&\
&\frac {\log_e e}{\log_e a} = \frac {1}{log_e a}&
\end{aligned}
$$

となり、これで

$$
\log_a e = \frac {1}{log_e a}
$$

であることがわかります。式 \((4.3)\) を \(\log_a e → \frac {1}{log_e a}\) と変形すると

$$
\begin{aligned}
f'(x) = &\frac{1}{x} \log_a {e}&\
=&\frac{1}{x} \cdot \frac {1}{log_e a}&
\end{aligned}
$$

となり、式 \((3.1)\) を導くことができました。

$$
f'(x) = \frac{1}{x \log_e a} \tag{3.1、再掲}
$$

ここまでの導出過程は実際に紙に書いてやってるみるのがオススメです。

なぜなら、類似の導出が今後の LLM 系のテクニックで登場します。
論文や解説などでは、この導出の5,6ステップをしれっと飛ばしていることが多いため、そういう部分でつまづかないために、この基礎段階で1歩ずつ導出していくクセをつけておくと良いと思います。

それではまた次回お会いしましょう!


navigation

Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部