[AI数理]対数関数の微分法・後編

[AI数理]対数関数の微分法・後編

おはようございます!(株) Qualiteg 研究部です。

本日は対数関数の微分法の後編です!

今回で、対数関数の微分法をマスターしましょう!

2. 対数関数の公式

まず、対数関数の公式をおさえておきます。あとで対数関数の微分法の導出で使用します

\(a^{0} = 1\) 、つまり \(a\) を \(0\) 乗すると \(1\) となるため

$$
\log_a 1 = 0 \tag{2.1}
$$

\(a^{1} = a\) 、つまり \(a\) を \(1\) 乗すると \(a\) となるため

$$
\log_a a = 1 \tag{2.2}
$$

積の対数

$$
\log_a (X \times Y) = \log_a X + \log_a Y \tag{2.3}
$$

商の対数

$$
\log_a ( \frac Y X) = \log_a Y - \log_a X \tag{2.4}
$$

 

式 \((2.4)\) で \(Y=1\) のとき、 \(log_a Y = log_a 1 = 0\) となるので

$$
\log_a ( \frac 1 X) = -\log_a X \tag{2.5}
$$

累乗の対数

$$
\log_a (X^{Y}) = Y \log_a X \tag{2.6}
$$

 

底の変換公式

$$
\log_a b = \frac {\log_c b} {\log_c a} \tag{2.7}
$$

\(c\) は新しい底。 \(a\) と \(b\) が以下のように移動するのが底の変換公式です。

さらっと書きましたが、このテクニックは今回に限らず色々なところで役立ちますので、↓を忘れないようにしましょう。

3. 対数関数の微分

さて、以下が対数関数の微分の公式です。

対数関数の微分の公式

$$
f(x) = \log_a x
$$

を \(x\) で微分した \(f'(x)\) は

$$
f'(x) = \frac{1}{x \log_e a} \tag{3.1}
$$

となります


\(e\) を底とする対数関数

$$
g(x) = \log_e x
$$

を \(x\) で微分した \(g'(x)\) は

$$
g'(x) = \frac{1}{x} \tag{3.2}
$$

となります。

なぜなら式 \((3.1)\) の \(a\) に ネイピア数 \(e\) を代入して \(g'(x) = \frac{1}{x \log_e e}\) であるが、 \(\log_e e = 1\) であるので \(g'(x) = \frac{1}{x}\) が導けるというわけす。

4. 対数関数の微分を導出する

さて、先に微分の公式を示してしまいましたが、そこまでは前菜。

ここがメインディッシュです。

前述した対数関数の微分の公式 式 \((3.1)\) を、いままで見てきた道具を使って導き出していきましょう

$$
f(x) = \log_a x
$$

を微分の公式にあてはめると

$$
\begin{aligned}
f'(x) = &\lim_{h \to 0} \frac {f(x+h)-f(x)} {h}& \
=& \lim_{h \to 0} \frac {\log_a (x+h) - \log_a x} {h} &\
\end{aligned}
$$

となるので、 \(\frac {1}{h}\) をつかった表現にすると

$$
f'(x) = \lim_{h \to 0} \frac {1} {h} (\log_a (x+h) - \log_a x) \tag{4.1}
$$

となります。

ここで、

\((x+h) = Y\)、 \(x = X\) と置くと

$$
\log_a (x+h) - \log_a x = \log_a Y - \log_a X
$$

となります。

商の対数 の公式 \((2.4)\)

$$
\log_a ( \frac Y X) = \log_a Y - \log_a X \tag{2.4}
$$

を活用すると \(\log_a Y - \log_a X\) は \(\log_a ( \frac Y X)\) となるので

ここまでの展開を列挙すると

$$
\begin{aligned}
&\log_a (x+h) - \log_a x&\
= &\log_a Y - \log_a X& \
= &\log_a ( \frac Y X)&
\end{aligned}
$$

となります。

ここで、 \(X = x\) と \(Y= (x+h)\) だったので、

$$
\begin{aligned}
\log_a ( \frac Y X)= \log_a ( \frac {x+h}{x})\
\end{aligned}
$$

となるので、ここまでの展開を再度列挙すると

$$
\begin{aligned}
&\log_a (x+h) - \log_a x&\
= &\log_a Y - \log_a X& \
= &\log_a ( \frac Y X)&\
= &\log_a ( \frac {x+h}{x})&
\end{aligned}
$$

となります。

これを式 \((4.1)\) に反映すると、

$$
f'(x) = \lim_{h \to 0} \frac {1} {h} (\log_a (x+h) - \log_a x) = \lim_{h \to 0} \frac {1} {h} (\log_a ( \frac {x+h}{x})) \tag{4.2}
$$

となります。

累乗の対数 の公式 \((2.6)\) より \(Y \log_a X = \log_a (X^{Y})\) なので、\(Y = \frac {1}{h}\) 、 \(X=\frac {x+h}{x}\) とおくと

$$
\begin{aligned}
f'(x) = &\lim_{h \to 0} \frac {1} {h} (\log_a ( \frac {x+h}{x}))
= \lim_{h \to 0} Y (\log_a X)
= \lim_{h \to 0} (\log_a(X^{Y}))&\
\
&となるので、X と Y を戻すと、&\
\
& \lim_{h \to 0} Y (\log_a X) = \lim_{h \to 0} (\log_a(\frac {x+h}{x})^\frac {1} {h}) となります。& \
\
さらに &\frac {x+h}{x} = 1 + \frac {h}{x} なので、&\
\
&\lim_{h \to 0} (\log_a(\frac {x+h}{x})^\frac {1} {h}) = \lim_{h \to 0} (\log_a(1 + \frac {h}{x})^\frac {1} {h})&\
\
&さらに、 \frac{h}{x} = t と置き換えると、&\
&\lim_{h \to 0} →\lim_{t \to 0} となり、 \frac {1} {h} → \frac {1} {tx} となるため &\
\
&\lim_{h \to 0} (\log_a(1 + \frac {h}{x})^\frac {1} {h}) = \lim_{t \to 0} (\log_a(1 + t)^{\frac {1} {tx}}) = \lim_{t \to 0} (\log_a(1 + t)^{\frac {1} {t} \cdot \frac {1} {x}})&\
\end{aligned}
$$

指数関数の公式1.4より \((a^{x})^{y} = a^{xy}\) なので、

$$
\begin{aligned}
f'(x) = &\lim_{t \to 0} (\log_a(1 + t)^{\frac {1} {t} \cdot \frac {1} {x}}) = \lim_{t \to 0} (\log_a ((1 + t)^{\frac {1} {t}})^{\frac {1} {x}})\&
\
\end{aligned}
$$

$$
\begin{aligned}
上式で & \lim_{t \to 0} (1 + t)^{\frac {1}{t}} を e とすると &\
f'(x)=&\lim_{t \to 0} (\log_a ((1 + t)^{\frac {1} {t}})^{\frac {1} {x}})=
\log_a e^{\frac {1}{x}}&
\end{aligned}
$$

さらに 累乗の対数 の公式 \((2.6)\) より
\(\log_a (X^{Y}) = Y \log_a X\) なので、 \(Y = \frac {1}{x}\) 、 \(X = e\) とおくと

$$
f'(x) = \log_a e^{\frac {1}{x}} = \frac{1}{x} \log_a {e} \tag{4.3}
$$

ここで式 \((4.3)\) にある \(\log_a {e}\) に着目する

底の変換公式 式 \((2.7)\) より \(\log_a b = \frac {\log_c b} {\log_c a}\) であるので、 \(b = e\) 、 \(c=e\) とすると

$$
\begin{aligned}
\log_a e = \frac {\log_e e}{\log_e a}
\end{aligned}
$$

となります。

$$
\begin{aligned}
\log_e e = 1 なので&\
&\frac {\log_e e}{\log_e a} = \frac {1}{log_e a}&
\end{aligned}
$$

となり、これで

$$
\log_a e = \frac {1}{log_e a}
$$

であることがわかります。式 \((4.3)\) を \(\log_a e → \frac {1}{log_e a}\) と変形すると

$$
\begin{aligned}
f'(x) = &\frac{1}{x} \log_a {e}&\
=&\frac{1}{x} \cdot \frac {1}{log_e a}&
\end{aligned}
$$

となり、式 \((3.1)\) を導くことができました。

$$
f'(x) = \frac{1}{x \log_e a} \tag{3.1、再掲}
$$

ここまでの導出過程は実際に紙に書いてやってるみるのがオススメです。

なぜなら、類似の導出が今後の LLM 系のテクニックで登場します。
論文や解説などでは、この導出の5,6ステップをしれっと飛ばしていることが多いため、そういう部分でつまづかないために、この基礎段階で1歩ずつ導出していくクセをつけておくと良いと思います。

それではまた次回お会いしましょう!


navigation

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation