WSL-Ubuntu で bitsandbytes のインストールに失敗するとき

WSL-Ubuntu で bitsandbytes のインストールに失敗するとき
Photo by Gabriel Heinzer / Unsplash

bitsandbytes を pip install しようとしたときに、以下のようなエラーがでたときの対処方法です

Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>
    lib = get_native_library()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 96, in get_native_library
    dll = ct.cdll.LoadLibrary(str(binary_path))
  File "/usr/lib/python3.10/ctypes/__init__.py", line 452, in LoadLibrary
    return self._dlltype(name)
  File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libcusparse.so.11: cannot open shared object file: No such file or directory

CUDA Setup failed despite CUDA being available. Please run the following command to get more information:

python -m bitsandbytes

Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them
to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes
and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues

デバッグ情報の表示と読み解き

Pythonのモジュール実行機能を使って、bitsandbytesをモジュール実行してデバッグ情報を表示してみます。

python -m bitsandbytes

Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>
    lib = get_native_library()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 96, in get_native_library
    dll = ct.cdll.LoadLibrary(str(binary_path))
  File "/usr/lib/python3.10/ctypes/__init__.py", line 452, in LoadLibrary
    return self._dlltype(name)
  File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libcusparse.so.11: cannot open shared object file: No such file or directory

CUDA Setup failed despite CUDA being available. Please run the following command to get more information:

python -m bitsandbytes

Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them
to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes
and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
CUDA specs: CUDASpecs(highest_compute_capability=(8, 6), cuda_version_string='117', cuda_version_tuple=(11, 7))
PyTorch settings found: CUDA_VERSION=117, Highest Compute Capability: (8, 6).
To manually override the PyTorch CUDA version please see: https://github.com/TimDettmers/bitsandbytes/blob/main/docs/source/nonpytorchcuda.mdx
CUDA SETUP: WARNING! CUDA runtime files not found in any environmental path.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Checking that the library is importable and CUDA is callable...
Couldn't load the bitsandbytes library, likely due to missing binaries.
Please ensure bitsandbytes is properly installed.

For source installations, compile the binaries with `cmake -DCOMPUTE_BACKEND=cuda -S .`.
See the documentation for more details if needed.

Trying a simple check anyway, but this will likely fail...
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/diagnostics/main.py", line 66, in main
    sanity_check()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/diagnostics/main.py", line 40, in sanity_check
    adam.step()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/optim/optimizer.py", line 280, in wrapper
    out = func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/optim/optimizer.py", line 287, in step
    self.update_step(group, p, gindex, pindex)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/optim/optimizer.py", line 496, in update_step
    F.optimizer_update_32bit(
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/functional.py", line 1584, in optimizer_update_32bit
    optim_func = str2optimizer32bit[optimizer_name][0]
NameError: name 'str2optimizer32bit' is not defined
Above we output some debug information.
Please provide this info when creating an issue via https://github.com/TimDettmers/bitsandbytes/issues/new/choose
WARNING: Please be sure to sanitize sensitive info from the output before posting it.

実行時のエラー情報とともに、 BUG REPORT INFORMATION が表示されます。

ここには以下2つの重要な情報が含まれています

  • LD_LIBRARY_PATH に CUDA のパスを入れたほうがいいかも
  • 現在の venv にある PyTorch が使用している CUDA バージョンは PyTorch settings found: CUDA_VERSION=117 と表示されていることから 11.7

現在の WSL-Ubuntu にインストールされている CUDA バージョンを確認する

現在の WSL2 Ubuntu にインストールされている CUDA バージョンを確認します。

ls /usr/local/cuda* -d

でCUDAのインストールディレクトリ一覧をみてみると、

/usr/local/cuda /usr/local/cuda-12 /usr/local/cuda-12.4

とありましたので、 CUDA バージョン 12.4 がこのubuntuにインストールされていることがわかりました。

モジュール単位でより詳しいバージョン番号までみたいときは

cat /usr/local/cuda/version.json

で表示させることも可能です。

エラーメッセージの原因

このエラーメッセージの原因がみえてきました。

venv にインストールされている PyTorch は CUDA_VERSION=117 用のインストールであったにもかかわらず、実際に ubuntu にインストールされている CUDAバージョンが12.4 だったため、 11.7をさがしにいったbitsandbytes がCUDA ライブラリを見つけられなかった、 ことが原因でした。

対処法

対処法としては3つあります

  1. ubuntu の CUDA ライブラリを venv とおなじ CUDA 11.7 にする
  2. venv にあるライブラリを ubuntu とおなじ CUDA 12.4 にする
  3. bitsandbytes に CUDA 12.4 を使うように教え込む

ここでは、いちばん簡単にできる 3 でやってみます。

(これで、アプリケーションのテストが通れば問題ない。テストが通らなければ、1や2で対策することになるでしょう)

Bitsandbytes に CUDA バージョンを教える

bitsandbytes に CUDA 12.4 ライブラリのパスを指定するには、以下のようにします

export BNB_CUDA_VERSION=124

さて、これで、もういちどbitsadnbytesをモジュール実行してみます。

python -m bitsandbytes

WARNING: BNB_CUDA_VERSION=124 environment variable detected; loading libbitsandbytes_cuda124.so.
This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.
If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=
If you use the manual override make sure the right libcudart.so is in your LD_LIBRARY_PATH
For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
CUDA specs: CUDASpecs(highest_compute_capability=(8, 6), cuda_version_string='117', cuda_version_tuple=(11, 7))
PyTorch settings found: CUDA_VERSION=117, Highest Compute Capability: (8, 6).
WARNING: BNB_CUDA_VERSION=124 environment variable detected; loading libbitsandbytes_cuda124.so.
This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.
If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=
If you use the manual override make sure the right libcudart.so is in your LD_LIBRARY_PATH
For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64

To manually override the PyTorch CUDA version please see: https://github.com/TimDettmers/bitsandbytes/blob/main/docs/source/nonpytorchcuda.mdx
CUDA SETUP: WARNING! CUDA runtime files not found in any environmental path.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Checking that the library is importable and CUDA is callable...
SUCCESS!
Installation was successful!

Installation was successful!

ということで、今度は、無事に bitsandbytes が CUDAライブラリをみつけることができうまく動いてくれそうです。

環境変数が有効になるように設定する

BNB_CUDA_VERSION が有効になるようにしましょう

.bashrc に入れる場合

ターミナルからPythonアプリを実行するときのために .bashrc に BNB_CUDA_VERSION 環境変数を追加しておきます

.bashrc を開いたら、最後の行に

export BNB_CUDA_VERSION=124

を記述しておきます。

コードで直接指定する場合

以下のようにすれば、pythonコードから直接指定することもできます

import os

# 環境変数 BNB_CUDA_VERSION を設定
os.environ['BNB_CUDA_VERSION'] = '124'

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation