WSL-Ubuntu で bitsandbytes のインストールに失敗するとき

WSL-Ubuntu で bitsandbytes のインストールに失敗するとき
Photo by Gabriel Heinzer / Unsplash

bitsandbytes を pip install しようとしたときに、以下のようなエラーがでたときの対処方法です

Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>
    lib = get_native_library()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 96, in get_native_library
    dll = ct.cdll.LoadLibrary(str(binary_path))
  File "/usr/lib/python3.10/ctypes/__init__.py", line 452, in LoadLibrary
    return self._dlltype(name)
  File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libcusparse.so.11: cannot open shared object file: No such file or directory

CUDA Setup failed despite CUDA being available. Please run the following command to get more information:

python -m bitsandbytes

Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them
to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes
and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues

デバッグ情報の表示と読み解き

Pythonのモジュール実行機能を使って、bitsandbytesをモジュール実行してデバッグ情報を表示してみます。

python -m bitsandbytes

Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>
    lib = get_native_library()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 96, in get_native_library
    dll = ct.cdll.LoadLibrary(str(binary_path))
  File "/usr/lib/python3.10/ctypes/__init__.py", line 452, in LoadLibrary
    return self._dlltype(name)
  File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libcusparse.so.11: cannot open shared object file: No such file or directory

CUDA Setup failed despite CUDA being available. Please run the following command to get more information:

python -m bitsandbytes

Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them
to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes
and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
CUDA specs: CUDASpecs(highest_compute_capability=(8, 6), cuda_version_string='117', cuda_version_tuple=(11, 7))
PyTorch settings found: CUDA_VERSION=117, Highest Compute Capability: (8, 6).
To manually override the PyTorch CUDA version please see: https://github.com/TimDettmers/bitsandbytes/blob/main/docs/source/nonpytorchcuda.mdx
CUDA SETUP: WARNING! CUDA runtime files not found in any environmental path.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Checking that the library is importable and CUDA is callable...
Couldn't load the bitsandbytes library, likely due to missing binaries.
Please ensure bitsandbytes is properly installed.

For source installations, compile the binaries with `cmake -DCOMPUTE_BACKEND=cuda -S .`.
See the documentation for more details if needed.

Trying a simple check anyway, but this will likely fail...
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/diagnostics/main.py", line 66, in main
    sanity_check()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/diagnostics/main.py", line 40, in sanity_check
    adam.step()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/optim/optimizer.py", line 280, in wrapper
    out = func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/optim/optimizer.py", line 287, in step
    self.update_step(group, p, gindex, pindex)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/optim/optimizer.py", line 496, in update_step
    F.optimizer_update_32bit(
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/functional.py", line 1584, in optimizer_update_32bit
    optim_func = str2optimizer32bit[optimizer_name][0]
NameError: name 'str2optimizer32bit' is not defined
Above we output some debug information.
Please provide this info when creating an issue via https://github.com/TimDettmers/bitsandbytes/issues/new/choose
WARNING: Please be sure to sanitize sensitive info from the output before posting it.

実行時のエラー情報とともに、 BUG REPORT INFORMATION が表示されます。

ここには以下2つの重要な情報が含まれています

  • LD_LIBRARY_PATH に CUDA のパスを入れたほうがいいかも
  • 現在の venv にある PyTorch が使用している CUDA バージョンは PyTorch settings found: CUDA_VERSION=117 と表示されていることから 11.7

現在の WSL-Ubuntu にインストールされている CUDA バージョンを確認する

現在の WSL2 Ubuntu にインストールされている CUDA バージョンを確認します。

ls /usr/local/cuda* -d

でCUDAのインストールディレクトリ一覧をみてみると、

/usr/local/cuda /usr/local/cuda-12 /usr/local/cuda-12.4

とありましたので、 CUDA バージョン 12.4 がこのubuntuにインストールされていることがわかりました。

モジュール単位でより詳しいバージョン番号までみたいときは

cat /usr/local/cuda/version.json

で表示させることも可能です。

エラーメッセージの原因

このエラーメッセージの原因がみえてきました。

venv にインストールされている PyTorch は CUDA_VERSION=117 用のインストールであったにもかかわらず、実際に ubuntu にインストールされている CUDAバージョンが12.4 だったため、 11.7をさがしにいったbitsandbytes がCUDA ライブラリを見つけられなかった、 ことが原因でした。

対処法

対処法としては3つあります

  1. ubuntu の CUDA ライブラリを venv とおなじ CUDA 11.7 にする
  2. venv にあるライブラリを ubuntu とおなじ CUDA 12.4 にする
  3. bitsandbytes に CUDA 12.4 を使うように教え込む

ここでは、いちばん簡単にできる 3 でやってみます。

(これで、アプリケーションのテストが通れば問題ない。テストが通らなければ、1や2で対策することになるでしょう)

Bitsandbytes に CUDA バージョンを教える

bitsandbytes に CUDA 12.4 ライブラリのパスを指定するには、以下のようにします

export BNB_CUDA_VERSION=124

さて、これで、もういちどbitsadnbytesをモジュール実行してみます。

python -m bitsandbytes

WARNING: BNB_CUDA_VERSION=124 environment variable detected; loading libbitsandbytes_cuda124.so.
This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.
If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=
If you use the manual override make sure the right libcudart.so is in your LD_LIBRARY_PATH
For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
CUDA specs: CUDASpecs(highest_compute_capability=(8, 6), cuda_version_string='117', cuda_version_tuple=(11, 7))
PyTorch settings found: CUDA_VERSION=117, Highest Compute Capability: (8, 6).
WARNING: BNB_CUDA_VERSION=124 environment variable detected; loading libbitsandbytes_cuda124.so.
This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.
If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=
If you use the manual override make sure the right libcudart.so is in your LD_LIBRARY_PATH
For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64

To manually override the PyTorch CUDA version please see: https://github.com/TimDettmers/bitsandbytes/blob/main/docs/source/nonpytorchcuda.mdx
CUDA SETUP: WARNING! CUDA runtime files not found in any environmental path.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Checking that the library is importable and CUDA is callable...
SUCCESS!
Installation was successful!

Installation was successful!

ということで、今度は、無事に bitsandbytes が CUDAライブラリをみつけることができうまく動いてくれそうです。

環境変数が有効になるように設定する

BNB_CUDA_VERSION が有効になるようにしましょう

.bashrc に入れる場合

ターミナルからPythonアプリを実行するときのために .bashrc に BNB_CUDA_VERSION 環境変数を追加しておきます

.bashrc を開いたら、最後の行に

export BNB_CUDA_VERSION=124

を記述しておきます。

コードで直接指定する場合

以下のようにすれば、pythonコードから直接指定することもできます

import os

# 環境変数 BNB_CUDA_VERSION を設定
os.environ['BNB_CUDA_VERSION'] = '124'

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部