WSL-Ubuntu で bitsandbytes のインストールに失敗するとき

WSL-Ubuntu で bitsandbytes のインストールに失敗するとき
Photo by Gabriel Heinzer / Unsplash

bitsandbytes を pip install しようとしたときに、以下のようなエラーがでたときの対処方法です

Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>
    lib = get_native_library()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 96, in get_native_library
    dll = ct.cdll.LoadLibrary(str(binary_path))
  File "/usr/lib/python3.10/ctypes/__init__.py", line 452, in LoadLibrary
    return self._dlltype(name)
  File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libcusparse.so.11: cannot open shared object file: No such file or directory

CUDA Setup failed despite CUDA being available. Please run the following command to get more information:

python -m bitsandbytes

Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them
to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes
and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues

デバッグ情報の表示と読み解き

Pythonのモジュール実行機能を使って、bitsandbytesをモジュール実行してデバッグ情報を表示してみます。

python -m bitsandbytes

Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>
    lib = get_native_library()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 96, in get_native_library
    dll = ct.cdll.LoadLibrary(str(binary_path))
  File "/usr/lib/python3.10/ctypes/__init__.py", line 452, in LoadLibrary
    return self._dlltype(name)
  File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__
    self._handle = _dlopen(self._name, mode)
OSError: libcusparse.so.11: cannot open shared object file: No such file or directory

CUDA Setup failed despite CUDA being available. Please run the following command to get more information:

python -m bitsandbytes

Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them
to your LD_LIBRARY_PATH. If you suspect a bug, please take the information from python -m bitsandbytes
and open an issue at: https://github.com/TimDettmers/bitsandbytes/issues
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
CUDA specs: CUDASpecs(highest_compute_capability=(8, 6), cuda_version_string='117', cuda_version_tuple=(11, 7))
PyTorch settings found: CUDA_VERSION=117, Highest Compute Capability: (8, 6).
To manually override the PyTorch CUDA version please see: https://github.com/TimDettmers/bitsandbytes/blob/main/docs/source/nonpytorchcuda.mdx
CUDA SETUP: WARNING! CUDA runtime files not found in any environmental path.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Checking that the library is importable and CUDA is callable...
Couldn't load the bitsandbytes library, likely due to missing binaries.
Please ensure bitsandbytes is properly installed.

For source installations, compile the binaries with `cmake -DCOMPUTE_BACKEND=cuda -S .`.
See the documentation for more details if needed.

Trying a simple check anyway, but this will likely fail...
Traceback (most recent call last):
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/diagnostics/main.py", line 66, in main
    sanity_check()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/diagnostics/main.py", line 40, in sanity_check
    adam.step()
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/optim/optimizer.py", line 280, in wrapper
    out = func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/optim/optimizer.py", line 287, in step
    self.update_step(group, p, gindex, pindex)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/optim/optimizer.py", line 496, in update_step
    F.optimizer_update_32bit(
  File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/functional.py", line 1584, in optimizer_update_32bit
    optim_func = str2optimizer32bit[optimizer_name][0]
NameError: name 'str2optimizer32bit' is not defined
Above we output some debug information.
Please provide this info when creating an issue via https://github.com/TimDettmers/bitsandbytes/issues/new/choose
WARNING: Please be sure to sanitize sensitive info from the output before posting it.

実行時のエラー情報とともに、 BUG REPORT INFORMATION が表示されます。

ここには以下2つの重要な情報が含まれています

  • LD_LIBRARY_PATH に CUDA のパスを入れたほうがいいかも
  • 現在の venv にある PyTorch が使用している CUDA バージョンは PyTorch settings found: CUDA_VERSION=117 と表示されていることから 11.7

現在の WSL-Ubuntu にインストールされている CUDA バージョンを確認する

現在の WSL2 Ubuntu にインストールされている CUDA バージョンを確認します。

ls /usr/local/cuda* -d

でCUDAのインストールディレクトリ一覧をみてみると、

/usr/local/cuda /usr/local/cuda-12 /usr/local/cuda-12.4

とありましたので、 CUDA バージョン 12.4 がこのubuntuにインストールされていることがわかりました。

モジュール単位でより詳しいバージョン番号までみたいときは

cat /usr/local/cuda/version.json

で表示させることも可能です。

エラーメッセージの原因

このエラーメッセージの原因がみえてきました。

venv にインストールされている PyTorch は CUDA_VERSION=117 用のインストールであったにもかかわらず、実際に ubuntu にインストールされている CUDAバージョンが12.4 だったため、 11.7をさがしにいったbitsandbytes がCUDA ライブラリを見つけられなかった、 ことが原因でした。

対処法

対処法としては3つあります

  1. ubuntu の CUDA ライブラリを venv とおなじ CUDA 11.7 にする
  2. venv にあるライブラリを ubuntu とおなじ CUDA 12.4 にする
  3. bitsandbytes に CUDA 12.4 を使うように教え込む

ここでは、いちばん簡単にできる 3 でやってみます。

(これで、アプリケーションのテストが通れば問題ない。テストが通らなければ、1や2で対策することになるでしょう)

Bitsandbytes に CUDA バージョンを教える

bitsandbytes に CUDA 12.4 ライブラリのパスを指定するには、以下のようにします

export BNB_CUDA_VERSION=124

さて、これで、もういちどbitsadnbytesをモジュール実行してみます。

python -m bitsandbytes

WARNING: BNB_CUDA_VERSION=124 environment variable detected; loading libbitsandbytes_cuda124.so.
This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.
If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=
If you use the manual override make sure the right libcudart.so is in your LD_LIBRARY_PATH
For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++ BUG REPORT INFORMATION ++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++ OTHER +++++++++++++++++++++++++++
CUDA specs: CUDASpecs(highest_compute_capability=(8, 6), cuda_version_string='117', cuda_version_tuple=(11, 7))
PyTorch settings found: CUDA_VERSION=117, Highest Compute Capability: (8, 6).
WARNING: BNB_CUDA_VERSION=124 environment variable detected; loading libbitsandbytes_cuda124.so.
This can be used to load a bitsandbytes version that is different from the PyTorch CUDA version.
If this was unintended set the BNB_CUDA_VERSION variable to an empty string: export BNB_CUDA_VERSION=
If you use the manual override make sure the right libcudart.so is in your LD_LIBRARY_PATH
For example by adding the following to your .bashrc: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_cuda_dir/lib64

To manually override the PyTorch CUDA version please see: https://github.com/TimDettmers/bitsandbytes/blob/main/docs/source/nonpytorchcuda.mdx
CUDA SETUP: WARNING! CUDA runtime files not found in any environmental path.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++ DEBUG INFO END ++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Checking that the library is importable and CUDA is callable...
SUCCESS!
Installation was successful!

Installation was successful!

ということで、今度は、無事に bitsandbytes が CUDAライブラリをみつけることができうまく動いてくれそうです。

環境変数が有効になるように設定する

BNB_CUDA_VERSION が有効になるようにしましょう

.bashrc に入れる場合

ターミナルからPythonアプリを実行するときのために .bashrc に BNB_CUDA_VERSION 環境変数を追加しておきます

.bashrc を開いたら、最後の行に

export BNB_CUDA_VERSION=124

を記述しておきます。

コードで直接指定する場合

以下のようにすれば、pythonコードから直接指定することもできます

import os

# 環境変数 BNB_CUDA_VERSION を設定
os.environ['BNB_CUDA_VERSION'] = '124'

Read more

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部
Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部