ChatStream α1(プレビュー)提供のお知らせ

ChatStream α1(プレビュー)提供のお知らせ

株式会社 Qualiteg は LLMアプリケーション開発ツールキット ChatStream™ のαプレビュー版の提供を開始いたしました。

ChatStream™ とは 高品質な商用 LLM アプリケーションを簡単に構築できる Python ライブラリです。

Web フロントエンド(チャットUI) と 推論実行サーバーソフトウェア で構成されており、追加のソフトウェア開発をせずに ChatStream™ だけで LLM アプリケーションを実現することができます。

また、頭脳となる LLM には HuggingFace 等で提供されているオープンソースLLMを使用することができます。(ChatGPT等のAPIをつなぎこむことも可能です)。

2023年9月 現在は、 Pythonのライブラリ として AGPL および 商用ライセンスで提供しています。

以下サイトよりオンラインデモをご体験ください!

https://chatstream.net

このデモのようなアプリケーションをほぼノーコードで作成することができます。

ChatStreamは本格的な商用用途に向けて設計されており、以下のような特長を持っております

ChatStream の特長

  1. 高いUXを実現したチャットUI

    1. ChatGPTライクなユーザーインタフェースで迷わない
    2. マルチモーダルに対応した柔軟なチャットUI設計
  2. 短TATで高性能・高品質なチャットアプリを構築可能

    1. コマンド1つでインストール
    2. ローコード。数行のコードで本格的なLLM対話チャットを構築可能
  3. 高負荷設計

    1. 非同期文章生成処理により多ユーザー同時アクセスにも安定した応答
    2. 多ノード構成によりスケールアウトが容易
  4. 柔軟な動作環境(特定の環境に依存しない)

    1. Llama、RedpajamaIncite、Rinna など主要なLLM対応の動確済
    2. 各種ユーザー認証機構に柔軟に対応できる設計
    3. オンプレおよび各種クラウドプラットフォームに対応
    4. 推論実行はCPUおよびNVIDIA製 GPU (マルチGPUも可)対応
  5. 高UXなアプリ開発を加速化

    1. カスタマイズ可能なUIプリセットを豊富に準備
    2. LLM出力適正化を行う開発支援機能

動作環境は以下のとおりです。
(標準的な Python + NVIDIA GPU 環境で動作いたします)

動作環境

  • Python

    • Python 3.10 ~
    • Pytorch
  • GPU

    • NVIDIA CUDA 11.7 対応 GPU
  • 負荷分散

    • マルチGPUスケールアウト対応
    • マルチノードスケールアウト対応
    • リクエストキューイングによる負荷コントロール
  • OS

    • Linux
    • Windows Server
  • API

    • LLM の API 化に対応
  • 暗号化(TLS/SSL)

    • 対応
  • ユーザー認証

    • OAuthによる認証
    • メール認証
    • (他、独自認証に対応可能)

サポート

  • 豊富な日本語ドキュメント
  • 手厚いサポート
    • フルスクラッチ開発であるため、すみずみまで知り尽くしたエンジニアによるハンズオンサポートを英語・日本語にて提供
    • 時差なく、日本のワーキングタイムにサポート対応

次回以降、ビジネス面、技術面についてより詳しくご紹介してまいります!


株式会社Qualitegでは、 生成AIを活用した貴社課題解決、ChatStream 基盤とした LLM アプリケーション構築、PoCのコンサルティング、ご支援を行っております。

ご相談・ご用命は当社営業担当または以下コンタクトにてお問合せください。

https://qualiteg.com/contact


Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部