[ChatStream] Transformer応答をモックする Transformer Mock

[ChatStream] Transformer応答をモックする Transformer Mock

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、モックデータの作成方法について説明します! これは正式には「Transformer Mock」と呼ばれている機能のためのもので、実際のLLM出力をレコーディングして再現するためのものです。

なぜこんなことが必要かというと、 LLM アプリのテスト(単体テストなど)で使用します。LLMアプリのテストをするとき、古典的な単体テストでは、入力に対して期待する出力は固定されていることが前提です。

ところがLLMはその特性上、同一の入力に対しても毎回異なる応答を返してきます。そこが生成AIの良いところですが古典的な単体テストをするときには悩んでしまいます。

ここで賢い読者の皆様は、同一の入力に対して、同一の出力を得たいなら、シードを固定すればいいじゃん。とお考えの方もいらっしゃるとおもいますが、シード値を固定して、入力を固定して、各種サンプリングパラメータを固定しても GPUの種類が異なると異なる出力を出してしまう、ということがわかっています。

これでは、GPUを変更したとたんに単体テストが通らなくなって困ってしまうため、それならば、あるGPUに対して入力した値と出力された値をレコーディングしておき、単体テストのときにはそのレコーディングした結果を「再現」することで疑似的にGPUの計算入力と計算結果を模すことができる、というのが本機能の発想となっております。

これにより、単体テストにおいても ChatStream 内コードの多くの部分を通る(1回のテストでのカバレッジがあがる)ため単体テストの信頼性を向上させることができます。

また、大型のモデルの読み込みには何十分もかかることもあり、nightly ビルドでCIしたとしても、本質的じゃない(そこはカバーしなくてよい)部分のために多くの時間をとられてしまうという課題もあり、そういった課題についても本機能によるエミュレーションで大幅に時間短縮することができます。

モックデータの作成方法

モデルを読み込まなくても、モデルと同じ応答を行わせることができる Mock モード(モックモード)について説明します。

Transformer Mockモードとは

事前に Model,Tokenizer への入力と出力のペアを記録し、それを再生することで
実際には Model,Tokenizer が無くても あたかも Model,Tokenizer があるかのように振る舞わせることができます。

このように Model,Tokenizer をエミュレーションするのが Mockモードです

Transformer Mockモードのメリット

  • モデルデータの読み込み時間が無い。
  • 再現性のある出力(AIアシスタントの応答)を得ることができる

ことで、モデルそのもの以外の評価やテストを手軽に用意に行うことができます

Generator Mockとの違い

類似の機能に Generator Mock があります。

Transfromer Mock モードは 実際のModel,Tokenizerの挙動を記録して再現するのにたいして Generator Mock は
入力を受け取った後、ダミーの文章で応答します。 Transformer Mock モードは決められた入力しか受け付けられませんが、Generator Mockはどのような入力でもダミーの文章で応答します。

Generator MockはAPIの挙動確認などで活用できますが、テストコード実行時のカバレッジは Transformer Mockモードに比べるとだいぶ低くなりますので、カバレッジを重視される場合は、Transformer Mockモードの使用がオススメです。

記録と再現

Transformer Mock モードのための記録 ~ Probeモード ~

厳密には Mock,Tokenizer の挙動を再現することを Transformer Mock モードと呼びます。
Mock,Tokenizer の挙動を記録するモードのことを Probe モードと呼びます。

以下のように probe_mode_enabled=True とすることで、 Probeモードが有効になります


chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,
    context_len=1024,
    temperature=0.7,
    top_k=10,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=TokenSamplerIsok(),
    seed=42,
    probe_mode_enabled=True,
)

probe_mode_enabled=True な状態で ChatStreamサーバーを起動し、UIからテキストの入力を行い
応答を生成します。このように普通にチャットを行うだけでその入力、応答が自動的に記録されます。

記録されたデータは以下ディレクトリに保存されます

 [home_dir]/.cache/chatstream/probe_data 

Transformer Mock モードで Model,Tokenizer をエミュレーション

MockTransformer をつかうと、記録されたデータをつかって Model,Tokenizer をエミュレーションすることができます

MockTransformer(parent_dir_path=[親ディレクトリ], dirname=[記録されたデータの保存されたディレクトリ名],
                wait_sec=[1トークン生成するたびに設定するウェイト(秒)])

[親ディレクトリ]を省略した場合は

 [home_dir]/.cache/chatstream/probe_data 

がディレクトリとして適用されます。

サンプルコード


mock_transformer = MockTransformer(parent_dir_path=mock_data_dir, dirname=mock_data_name, wait_sec=0)

model = mock_transformer.get_model() # model
tokenizer = mock_transformer.get_tokenizer() # tokenizer
token_sampler = mock_transformer.get_token_sampler() # サンプリングクラス

if device.type == 'cuda' and num_gpus == 1:
    model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,  # The maximum size of the newly generated tokens
    context_len=1024,  # The size of the context (in terms of the number of tokens)
    temperature=0.7,  # The temperature value for randomness in prediction
    top_k=10,  # Value of top K for sampling
    top_p=0.9,  # Value of top P for sampling,
    # repetition_penalty=1.05,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=token_sampler,

)

これでChatStreamサーバーを起動するとTransformer Mockモードで動作します

注意

入力できるテキストや順序は、記録したときと同じテキストと順序となります

Read more

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部