[ChatStream] Transformer応答をモックする Transformer Mock

[ChatStream] Transformer応答をモックする Transformer Mock

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、モックデータの作成方法について説明します! これは正式には「Transformer Mock」と呼ばれている機能のためのもので、実際のLLM出力をレコーディングして再現するためのものです。

なぜこんなことが必要かというと、 LLM アプリのテスト(単体テストなど)で使用します。LLMアプリのテストをするとき、古典的な単体テストでは、入力に対して期待する出力は固定されていることが前提です。

ところがLLMはその特性上、同一の入力に対しても毎回異なる応答を返してきます。そこが生成AIの良いところですが古典的な単体テストをするときには悩んでしまいます。

ここで賢い読者の皆様は、同一の入力に対して、同一の出力を得たいなら、シードを固定すればいいじゃん。とお考えの方もいらっしゃるとおもいますが、シード値を固定して、入力を固定して、各種サンプリングパラメータを固定しても GPUの種類が異なると異なる出力を出してしまう、ということがわかっています。

これでは、GPUを変更したとたんに単体テストが通らなくなって困ってしまうため、それならば、あるGPUに対して入力した値と出力された値をレコーディングしておき、単体テストのときにはそのレコーディングした結果を「再現」することで疑似的にGPUの計算入力と計算結果を模すことができる、というのが本機能の発想となっております。

これにより、単体テストにおいても ChatStream 内コードの多くの部分を通る(1回のテストでのカバレッジがあがる)ため単体テストの信頼性を向上させることができます。

また、大型のモデルの読み込みには何十分もかかることもあり、nightly ビルドでCIしたとしても、本質的じゃない(そこはカバーしなくてよい)部分のために多くの時間をとられてしまうという課題もあり、そういった課題についても本機能によるエミュレーションで大幅に時間短縮することができます。

モックデータの作成方法

モデルを読み込まなくても、モデルと同じ応答を行わせることができる Mock モード(モックモード)について説明します。

Transformer Mockモードとは

事前に Model,Tokenizer への入力と出力のペアを記録し、それを再生することで
実際には Model,Tokenizer が無くても あたかも Model,Tokenizer があるかのように振る舞わせることができます。

このように Model,Tokenizer をエミュレーションするのが Mockモードです

Transformer Mockモードのメリット

  • モデルデータの読み込み時間が無い。
  • 再現性のある出力(AIアシスタントの応答)を得ることができる

ことで、モデルそのもの以外の評価やテストを手軽に用意に行うことができます

Generator Mockとの違い

類似の機能に Generator Mock があります。

Transfromer Mock モードは 実際のModel,Tokenizerの挙動を記録して再現するのにたいして Generator Mock は
入力を受け取った後、ダミーの文章で応答します。 Transformer Mock モードは決められた入力しか受け付けられませんが、Generator Mockはどのような入力でもダミーの文章で応答します。

Generator MockはAPIの挙動確認などで活用できますが、テストコード実行時のカバレッジは Transformer Mockモードに比べるとだいぶ低くなりますので、カバレッジを重視される場合は、Transformer Mockモードの使用がオススメです。

記録と再現

Transformer Mock モードのための記録 ~ Probeモード ~

厳密には Mock,Tokenizer の挙動を再現することを Transformer Mock モードと呼びます。
Mock,Tokenizer の挙動を記録するモードのことを Probe モードと呼びます。

以下のように probe_mode_enabled=True とすることで、 Probeモードが有効になります


chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,
    context_len=1024,
    temperature=0.7,
    top_k=10,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=TokenSamplerIsok(),
    seed=42,
    probe_mode_enabled=True,
)

probe_mode_enabled=True な状態で ChatStreamサーバーを起動し、UIからテキストの入力を行い
応答を生成します。このように普通にチャットを行うだけでその入力、応答が自動的に記録されます。

記録されたデータは以下ディレクトリに保存されます

 [home_dir]/.cache/chatstream/probe_data 

Transformer Mock モードで Model,Tokenizer をエミュレーション

MockTransformer をつかうと、記録されたデータをつかって Model,Tokenizer をエミュレーションすることができます

MockTransformer(parent_dir_path=[親ディレクトリ], dirname=[記録されたデータの保存されたディレクトリ名],
                wait_sec=[1トークン生成するたびに設定するウェイト(秒)])

[親ディレクトリ]を省略した場合は

 [home_dir]/.cache/chatstream/probe_data 

がディレクトリとして適用されます。

サンプルコード


mock_transformer = MockTransformer(parent_dir_path=mock_data_dir, dirname=mock_data_name, wait_sec=0)

model = mock_transformer.get_model() # model
tokenizer = mock_transformer.get_tokenizer() # tokenizer
token_sampler = mock_transformer.get_token_sampler() # サンプリングクラス

if device.type == 'cuda' and num_gpus == 1:
    model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,  # The maximum size of the newly generated tokens
    context_len=1024,  # The size of the context (in terms of the number of tokens)
    temperature=0.7,  # The temperature value for randomness in prediction
    top_k=10,  # Value of top K for sampling
    top_p=0.9,  # Value of top P for sampling,
    # repetition_penalty=1.05,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=token_sampler,

)

これでChatStreamサーバーを起動するとTransformer Mockモードで動作します

注意

入力できるテキストや順序は、記録したときと同じテキストと順序となります

Read more

産業交流展2024 に出展いたしました

産業交流展2024 に出展いたしました

こんにちは! 2024年11月21日~11月23日の3日間 東京ビックサイトにて開催された産業交流展2024(リアル展)において、当社のプロダクト・サービスの展示を行いました。 多くの方々に当社ブースへお立ち寄りいただき、誠にありがとうございました! (産業交流展2024のオンライン展示会は 2024年11月29日まで開催中です!) 本ブログでは、展示会当日の様子を簡単にレポートさせていただきます。 展示会の様子 当社ブースは「東京ビジネスフロンティア」パビリオン内に設けていただきました。 当社からは3名体制で、 エンタープライズLLMソリューション「Bestllam 」やLLMセキュリティソリューション「 LLM-Audit」 、経産省認定講座「AI・DX研修」についてデモンストレーションおよびご説明・ご案内をさせていただきました。 さらに、ステラリンク社さまのご厚意により、このかわいい移動式サイネージ「AdRobot」に、当社ブースの宣伝もしていただきました! 特典カード さて、ブースにお立ち寄りの際にお渡しした、Bestllam特典カードの招待コー

By Qualiteg ビジネス開発本部 | マーケティング部
「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

こんにちは! 本稿はWindows Server 2022 Datacenterエディションに「Windowsターミナル」をインストールする方法のメモです。 ステップバイステップでやるのは少し手間だったので、Powershellにペタっとするだけで自動的にインストールできるよう手順をスクリプト化しました。 管理者権限で開いた Powershell に以下、スクリプトをペタっとすると、後は勝手に「Windowsターミナル」がインストールされます。 (ただしスクリプトの実行結果の保証も責任も負いかねます) なにが手間か 何が手間かというと、Windows Server 2022 では、StoreもApp Installer(winget)もデフォルトではインストールされていないため「Windowsターミナル」をマニュアルでインストールしなければなりませんでした。 そこでペタっとするだけのスクリプト化 管理者権限で開いたPowershellに以下のスクリプトをペタっとすると「Windowsターミナル」が無事インストールされます。 パッケージのダウンロード先には [ユーザ

By Qualiteg プロダクト開発部
産業交流展2024に出展いたします

産業交流展2024に出展いたします

平素は当社事業に格別のご高配を賜り、厚く御礼申し上げます。 以前にもご案内させていただきましたが、この度、株式会社Qualitegは、多くの優れた企業が一堂に会する国内最大級の総合展示会「産業交流展2024」に出展する運びとなりました。 本展示会では、当社の最新のサービス・ソリューションを展示させていただきます。ご来場の皆様に直接ご説明させていただく貴重な機会として、ぜひブースまでお立ち寄りくださいませ 展示会概要 * 名称: 産業交流展2024 * 会期: 2024年11月20日(水)~22日(金) * 会場: 東京ビッグサイト 1・2ホール、アトリウム * 西1ホール 東京ビジネスフロンティアゾーン ビ-15 * 入場料: 無料(事前登録制) 開催時間 * 11月20日(水) 10:00~17:00 * 11月21日(木) 10:00~17:00 * 11月22日(金) 10:00~16:00

By Qualiteg ニュース
Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。 そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。 1. ユーザー中心の問題定義 サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします: * ターゲットユーザーへの徹底的なインタビュー * 既存の解決策の分析と不足点の特定 * ユーザーの行動パターン

By Join us, Michele on Qualiteg's adventure to innovation