[ChatStream] Transformer応答をモックする Transformer Mock

[ChatStream] Transformer応答をモックする Transformer Mock

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、モックデータの作成方法について説明します! これは正式には「Transformer Mock」と呼ばれている機能のためのもので、実際のLLM出力をレコーディングして再現するためのものです。

なぜこんなことが必要かというと、 LLM アプリのテスト(単体テストなど)で使用します。LLMアプリのテストをするとき、古典的な単体テストでは、入力に対して期待する出力は固定されていることが前提です。

ところがLLMはその特性上、同一の入力に対しても毎回異なる応答を返してきます。そこが生成AIの良いところですが古典的な単体テストをするときには悩んでしまいます。

ここで賢い読者の皆様は、同一の入力に対して、同一の出力を得たいなら、シードを固定すればいいじゃん。とお考えの方もいらっしゃるとおもいますが、シード値を固定して、入力を固定して、各種サンプリングパラメータを固定しても GPUの種類が異なると異なる出力を出してしまう、ということがわかっています。

これでは、GPUを変更したとたんに単体テストが通らなくなって困ってしまうため、それならば、あるGPUに対して入力した値と出力された値をレコーディングしておき、単体テストのときにはそのレコーディングした結果を「再現」することで疑似的にGPUの計算入力と計算結果を模すことができる、というのが本機能の発想となっております。

これにより、単体テストにおいても ChatStream 内コードの多くの部分を通る(1回のテストでのカバレッジがあがる)ため単体テストの信頼性を向上させることができます。

また、大型のモデルの読み込みには何十分もかかることもあり、nightly ビルドでCIしたとしても、本質的じゃない(そこはカバーしなくてよい)部分のために多くの時間をとられてしまうという課題もあり、そういった課題についても本機能によるエミュレーションで大幅に時間短縮することができます。

モックデータの作成方法

モデルを読み込まなくても、モデルと同じ応答を行わせることができる Mock モード(モックモード)について説明します。

Transformer Mockモードとは

事前に Model,Tokenizer への入力と出力のペアを記録し、それを再生することで
実際には Model,Tokenizer が無くても あたかも Model,Tokenizer があるかのように振る舞わせることができます。

このように Model,Tokenizer をエミュレーションするのが Mockモードです

Transformer Mockモードのメリット

  • モデルデータの読み込み時間が無い。
  • 再現性のある出力(AIアシスタントの応答)を得ることができる

ことで、モデルそのもの以外の評価やテストを手軽に用意に行うことができます

Generator Mockとの違い

類似の機能に Generator Mock があります。

Transfromer Mock モードは 実際のModel,Tokenizerの挙動を記録して再現するのにたいして Generator Mock は
入力を受け取った後、ダミーの文章で応答します。 Transformer Mock モードは決められた入力しか受け付けられませんが、Generator Mockはどのような入力でもダミーの文章で応答します。

Generator MockはAPIの挙動確認などで活用できますが、テストコード実行時のカバレッジは Transformer Mockモードに比べるとだいぶ低くなりますので、カバレッジを重視される場合は、Transformer Mockモードの使用がオススメです。

記録と再現

Transformer Mock モードのための記録 ~ Probeモード ~

厳密には Mock,Tokenizer の挙動を再現することを Transformer Mock モードと呼びます。
Mock,Tokenizer の挙動を記録するモードのことを Probe モードと呼びます。

以下のように probe_mode_enabled=True とすることで、 Probeモードが有効になります


chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,
    context_len=1024,
    temperature=0.7,
    top_k=10,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=TokenSamplerIsok(),
    seed=42,
    probe_mode_enabled=True,
)

probe_mode_enabled=True な状態で ChatStreamサーバーを起動し、UIからテキストの入力を行い
応答を生成します。このように普通にチャットを行うだけでその入力、応答が自動的に記録されます。

記録されたデータは以下ディレクトリに保存されます

 [home_dir]/.cache/chatstream/probe_data 

Transformer Mock モードで Model,Tokenizer をエミュレーション

MockTransformer をつかうと、記録されたデータをつかって Model,Tokenizer をエミュレーションすることができます

MockTransformer(parent_dir_path=[親ディレクトリ], dirname=[記録されたデータの保存されたディレクトリ名],
                wait_sec=[1トークン生成するたびに設定するウェイト(秒)])

[親ディレクトリ]を省略した場合は

 [home_dir]/.cache/chatstream/probe_data 

がディレクトリとして適用されます。

サンプルコード


mock_transformer = MockTransformer(parent_dir_path=mock_data_dir, dirname=mock_data_name, wait_sec=0)

model = mock_transformer.get_model() # model
tokenizer = mock_transformer.get_tokenizer() # tokenizer
token_sampler = mock_transformer.get_token_sampler() # サンプリングクラス

if device.type == 'cuda' and num_gpus == 1:
    model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,  # The maximum size of the newly generated tokens
    context_len=1024,  # The size of the context (in terms of the number of tokens)
    temperature=0.7,  # The temperature value for randomness in prediction
    top_k=10,  # Value of top K for sampling
    top_p=0.9,  # Value of top P for sampling,
    # repetition_penalty=1.05,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=token_sampler,

)

これでChatStreamサーバーを起動するとTransformer Mockモードで動作します

注意

入力できるテキストや順序は、記録したときと同じテキストと順序となります

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース