[ChatStream] Transformer応答をモックする Transformer Mock

[ChatStream] Transformer応答をモックする Transformer Mock

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、モックデータの作成方法について説明します! これは正式には「Transformer Mock」と呼ばれている機能のためのもので、実際のLLM出力をレコーディングして再現するためのものです。

なぜこんなことが必要かというと、 LLM アプリのテスト(単体テストなど)で使用します。LLMアプリのテストをするとき、古典的な単体テストでは、入力に対して期待する出力は固定されていることが前提です。

ところがLLMはその特性上、同一の入力に対しても毎回異なる応答を返してきます。そこが生成AIの良いところですが古典的な単体テストをするときには悩んでしまいます。

ここで賢い読者の皆様は、同一の入力に対して、同一の出力を得たいなら、シードを固定すればいいじゃん。とお考えの方もいらっしゃるとおもいますが、シード値を固定して、入力を固定して、各種サンプリングパラメータを固定しても GPUの種類が異なると異なる出力を出してしまう、ということがわかっています。

これでは、GPUを変更したとたんに単体テストが通らなくなって困ってしまうため、それならば、あるGPUに対して入力した値と出力された値をレコーディングしておき、単体テストのときにはそのレコーディングした結果を「再現」することで疑似的にGPUの計算入力と計算結果を模すことができる、というのが本機能の発想となっております。

これにより、単体テストにおいても ChatStream 内コードの多くの部分を通る(1回のテストでのカバレッジがあがる)ため単体テストの信頼性を向上させることができます。

また、大型のモデルの読み込みには何十分もかかることもあり、nightly ビルドでCIしたとしても、本質的じゃない(そこはカバーしなくてよい)部分のために多くの時間をとられてしまうという課題もあり、そういった課題についても本機能によるエミュレーションで大幅に時間短縮することができます。

モックデータの作成方法

モデルを読み込まなくても、モデルと同じ応答を行わせることができる Mock モード(モックモード)について説明します。

Transformer Mockモードとは

事前に Model,Tokenizer への入力と出力のペアを記録し、それを再生することで
実際には Model,Tokenizer が無くても あたかも Model,Tokenizer があるかのように振る舞わせることができます。

このように Model,Tokenizer をエミュレーションするのが Mockモードです

Transformer Mockモードのメリット

  • モデルデータの読み込み時間が無い。
  • 再現性のある出力(AIアシスタントの応答)を得ることができる

ことで、モデルそのもの以外の評価やテストを手軽に用意に行うことができます

Generator Mockとの違い

類似の機能に Generator Mock があります。

Transfromer Mock モードは 実際のModel,Tokenizerの挙動を記録して再現するのにたいして Generator Mock は
入力を受け取った後、ダミーの文章で応答します。 Transformer Mock モードは決められた入力しか受け付けられませんが、Generator Mockはどのような入力でもダミーの文章で応答します。

Generator MockはAPIの挙動確認などで活用できますが、テストコード実行時のカバレッジは Transformer Mockモードに比べるとだいぶ低くなりますので、カバレッジを重視される場合は、Transformer Mockモードの使用がオススメです。

記録と再現

Transformer Mock モードのための記録 ~ Probeモード ~

厳密には Mock,Tokenizer の挙動を再現することを Transformer Mock モードと呼びます。
Mock,Tokenizer の挙動を記録するモードのことを Probe モードと呼びます。

以下のように probe_mode_enabled=True とすることで、 Probeモードが有効になります


chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,
    context_len=1024,
    temperature=0.7,
    top_k=10,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=TokenSamplerIsok(),
    seed=42,
    probe_mode_enabled=True,
)

probe_mode_enabled=True な状態で ChatStreamサーバーを起動し、UIからテキストの入力を行い
応答を生成します。このように普通にチャットを行うだけでその入力、応答が自動的に記録されます。

記録されたデータは以下ディレクトリに保存されます

 [home_dir]/.cache/chatstream/probe_data 

Transformer Mock モードで Model,Tokenizer をエミュレーション

MockTransformer をつかうと、記録されたデータをつかって Model,Tokenizer をエミュレーションすることができます

MockTransformer(parent_dir_path=[親ディレクトリ], dirname=[記録されたデータの保存されたディレクトリ名],
                wait_sec=[1トークン生成するたびに設定するウェイト(秒)])

[親ディレクトリ]を省略した場合は

 [home_dir]/.cache/chatstream/probe_data 

がディレクトリとして適用されます。

サンプルコード


mock_transformer = MockTransformer(parent_dir_path=mock_data_dir, dirname=mock_data_name, wait_sec=0)

model = mock_transformer.get_model() # model
tokenizer = mock_transformer.get_tokenizer() # tokenizer
token_sampler = mock_transformer.get_token_sampler() # サンプリングクラス

if device.type == 'cuda' and num_gpus == 1:
    model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,
    max_queue_size=5,
    model=model,
    tokenizer=tokenizer,
    num_gpus=num_gpus,
    device=device,
    chat_prompt_clazz=ChatPrompt,
    add_special_tokens=False,
    max_new_tokens=128,  # The maximum size of the newly generated tokens
    context_len=1024,  # The size of the context (in terms of the number of tokens)
    temperature=0.7,  # The temperature value for randomness in prediction
    top_k=10,  # Value of top K for sampling
    top_p=0.9,  # Value of top P for sampling,
    # repetition_penalty=1.05,
    client_roles=client_role_free_access,
    locale='ja',
    token_sampler=token_sampler,

)

これでChatStreamサーバーを起動するとTransformer Mockモードで動作します

注意

入力できるテキストや順序は、記録したときと同じテキストと順序となります

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation