[AI数理]徹底的に交差エントロピー(1)

[AI数理]徹底的に交差エントロピー(1)

おはようございます!(株) Qualiteg 研究部です。

今日からは交差エントロピーについて、徹底的に学んでいきたいとおもいます。

交差エントロピー関数の式は2つあるの?

本シリーズではは、機械学習で分類問題の損失関数としてよく使用される交差エントロピー関数をとりあげます。

実はこれまで学んできた 指数関数や対数関数の微分法は、この交差エントロピー関数を深く理解するためのものでした。

交差エントロピーがどのような性質をもっていて、どのように導かれていくのかを理解するのは今後のLLMの仕組み解明でも大いに役立つのでしっかりみていきたいとおもいます!

さて、さっそくですが、

下の \((1)\) は 交差エントロピー関数 です

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

下の \((2)\) も、 交差エントロピー関数 です。

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

交差エントロピー関数」 で検索すると、だいたい上の2式が紹介されています。

「え?定義が2つあるの?」と素朴な疑問も浮かびますが、実はどちらも同じところから導き出すことができます。

式の単なる暗記よりもどういう素性のものなのか脳ミソに染み込ませたいので、式の導出過程を省略せずに一歩ずつ展開していって、しっかりと概念を理解したいとおもいます。

そのため同じようなことをクドクド、しつこく、繰り返し見て考えていきます!

なお、先にネタバレすると、 \((1)\) 式は 多値分類向け交差エントロピー (多値分類=入力データを複数のクラスのどれかに分類するタスク)に使えるもので、 \((2)\) 式は 二値分類用の交差エントロピー で二値分類用(入力を2つのクラスに分類するタスク)に使えるものです。

\((2)\) 式の二値交差エントロピー関数 は、 \((1)\) 式の多クラス分類用の交差エントロピーを二値分類という特殊ケース用に式展開したもので \((1)\) 式 から簡単に導出することができます。
その展開方法も、のちほど詳しく説明します。

本シリーズで理解したいこと

  • 交差エントロピー関数って2つあるみたいけど、どっちが正解なの? という素朴な疑問が解決する

  • 交差エントロピー(Cross Entropy)と 多値用交差エントロピー(Categorical Cross Entropy)と二値用交差エントロピー(Binary Cross Entropy)の違いと使いどころが理解できる

  • そもそも交差エントロピーって一体何者? どこから導き出されたものなの?が理解できる

1章 分類問題で使う交差エントロピー

ニューラルネットワークで使用する損失関数は多種多様にありますが、分類問題でのド定番は 交差エントロピー誤差関数 だとおもいます。

各種フレームワークにも必ず実装されており、「まず Deep Learning をやってみよう」というシーンでは必ずお世話になります。

分類問題はおおきく2つに分けられます。

  • 二値分類 (2クラス分類)
    • 入力データを2つのクラスのどちらに所属するのかを予測します。
      2クラス分類 ともよびます。
      二値分類は結果が「YES」なのか「No」なのかを予測することができます。
      データサイエンスのチュートリアルで有名な 「タイタニック号の乗客が生存できたか、できなかったか」 も二値分類の問題です。

二値分類の例

  • 「このメールはスパムなのかスパムじゃないのか」
  • 「このお客は買うのか買わないのか」
  • 「この生徒は合格するのか、しないのか」
  • 「映画レビューの感想が肯定的か否定的か」

 

  • 多値分類 (多クラス分類)
    • 入力データが複数あるクラスのどのクラスに所属してるのかを予測します。二値分類とは違い、クラスは複数あってかまいませんが、何個のクラスに分類するかは事前に決めておきます。
      たとえば、入力した画像データが
      「イヌ」「キツネ」「オオカミ」「ネコ」「タヌキ」 の5個のクラスのうちどのクラスに所属するのかを予測する、といった具合になります。

この二値分類と多値分類の学習で使う 損失関数交差エントロピー誤差関数 (cross entropy loss function) です。

多値分類(多クラス分類)と二値分類(2クラス分類)を分けていますが、論理的に考えてみれば、多値分類はその名の通り入力データが複数のクラスのうち、どのクラスに所属するかを予測するものなので、二値分類は多値分類の中に入ります。仮に分類したいクラスの数を \(k\) 個 とおけば、 \(k=2\) のときが二値分類になるということになります。 そして、 \(k>2\) がいわゆる多クラス分類になります。

このように論理的には二値分類は多値分類の特殊ケースと考えられますが、一見すると以下のように別の交差エントロピー誤差関数が使われます。

これはなぜでしょうか?・・・

ということも含めて 交差エントロピー が最終的にクリアになるように数式を丁寧にひもときつつみていきます。

二値分類用の交差エントロピー誤差関数Binary Cross Entropy (バイナリクロスエントロピー)という呼称がつかわれ Deep Learning のフレームワーク等では \(BCE\) の略語で実装されています。
binary は バイナリ と読み、二値とか、二成分とか、二元みたいな意味になります。入力データを「AかAじゃないか」の2通りに見分けるのでその通りな名前ですね)

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2、再掲}
$$

多値分類用の交差エントロピー誤差関数Categorical Cross EntropyMulti-Class Cross Entropy という呼称がつかわれます。

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1、再掲}
$$

さて、今回は、交差エントロピー誤差関数がどのような問題で活躍しているか概観してまいりました。

次回は、分類問題の本質と尤度関数についてみていきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング
ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

11月に入り、朝晩の冷え込みが本格的になってきましたね。オフィスでも暖房を入れ始めた方も多いのではないでしょうか。 温かいコーヒーを片手に、シリーズ第4回「プロキシサーバーと統合Windows認証」をお届けします。 さて、前回(第3回)は、クライアントPCやサーバーをドメインに参加させる際の「信頼関係」の確立について深掘りしました。コンピューターアカウントが120文字のパスワードで自動認証される仕組みを理解いただけたことで、今回のプロキシサーバーの話もスムーズに入っていけるはずです。 ChatGPTやClaudeへのアクセスを監視する中間プロキシを構築する際、最も重要なのが「確実なユーザー特定」です。せっかくHTTPS通信をインターセプトして入出力内容を記録できても、アクセス元が「tanaka_t」なのか「yamada_h」なのかが分からなければ、監査ログとしての価値は半減してしまいます。 今回は、プロキシサーバー自体をドメインメンバーとして動作させることで、Kerberosチケットの検証を可能にし、透過的なユーザー認証を実現する方法を詳しく解説します。Windows版Squid

By Qualiteg AIセキュリティチーム
エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部