[AI数理]徹底的に交差エントロピー(1)

[AI数理]徹底的に交差エントロピー(1)

おはようございます!(株) Qualiteg 研究部です。

今日からは交差エントロピーについて、徹底的に学んでいきたいとおもいます。

交差エントロピー関数の式は2つあるの?

本シリーズではは、機械学習で分類問題の損失関数としてよく使用される交差エントロピー関数をとりあげます。

実はこれまで学んできた 指数関数や対数関数の微分法は、この交差エントロピー関数を深く理解するためのものでした。

交差エントロピーがどのような性質をもっていて、どのように導かれていくのかを理解するのは今後のLLMの仕組み解明でも大いに役立つのでしっかりみていきたいとおもいます!

さて、さっそくですが、

下の \((1)\) は 交差エントロピー関数 です

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

下の \((2)\) も、 交差エントロピー関数 です。

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

交差エントロピー関数」 で検索すると、だいたい上の2式が紹介されています。

「え?定義が2つあるの?」と素朴な疑問も浮かびますが、実はどちらも同じところから導き出すことができます。

式の単なる暗記よりもどういう素性のものなのか脳ミソに染み込ませたいので、式の導出過程を省略せずに一歩ずつ展開していって、しっかりと概念を理解したいとおもいます。

そのため同じようなことをクドクド、しつこく、繰り返し見て考えていきます!

なお、先にネタバレすると、 \((1)\) 式は 多値分類向け交差エントロピー (多値分類=入力データを複数のクラスのどれかに分類するタスク)に使えるもので、 \((2)\) 式は 二値分類用の交差エントロピー で二値分類用(入力を2つのクラスに分類するタスク)に使えるものです。

\((2)\) 式の二値交差エントロピー関数 は、 \((1)\) 式の多クラス分類用の交差エントロピーを二値分類という特殊ケース用に式展開したもので \((1)\) 式 から簡単に導出することができます。
その展開方法も、のちほど詳しく説明します。

本シリーズで理解したいこと

  • 交差エントロピー関数って2つあるみたいけど、どっちが正解なの? という素朴な疑問が解決する

  • 交差エントロピー(Cross Entropy)と 多値用交差エントロピー(Categorical Cross Entropy)と二値用交差エントロピー(Binary Cross Entropy)の違いと使いどころが理解できる

  • そもそも交差エントロピーって一体何者? どこから導き出されたものなの?が理解できる

1章 分類問題で使う交差エントロピー

ニューラルネットワークで使用する損失関数は多種多様にありますが、分類問題でのド定番は 交差エントロピー誤差関数 だとおもいます。

各種フレームワークにも必ず実装されており、「まず Deep Learning をやってみよう」というシーンでは必ずお世話になります。

分類問題はおおきく2つに分けられます。

  • 二値分類 (2クラス分類)
    • 入力データを2つのクラスのどちらに所属するのかを予測します。
      2クラス分類 ともよびます。
      二値分類は結果が「YES」なのか「No」なのかを予測することができます。
      データサイエンスのチュートリアルで有名な 「タイタニック号の乗客が生存できたか、できなかったか」 も二値分類の問題です。

二値分類の例

  • 「このメールはスパムなのかスパムじゃないのか」
  • 「このお客は買うのか買わないのか」
  • 「この生徒は合格するのか、しないのか」
  • 「映画レビューの感想が肯定的か否定的か」

 

  • 多値分類 (多クラス分類)
    • 入力データが複数あるクラスのどのクラスに所属してるのかを予測します。二値分類とは違い、クラスは複数あってかまいませんが、何個のクラスに分類するかは事前に決めておきます。
      たとえば、入力した画像データが
      「イヌ」「キツネ」「オオカミ」「ネコ」「タヌキ」 の5個のクラスのうちどのクラスに所属するのかを予測する、といった具合になります。

この二値分類と多値分類の学習で使う 損失関数交差エントロピー誤差関数 (cross entropy loss function) です。

多値分類(多クラス分類)と二値分類(2クラス分類)を分けていますが、論理的に考えてみれば、多値分類はその名の通り入力データが複数のクラスのうち、どのクラスに所属するかを予測するものなので、二値分類は多値分類の中に入ります。仮に分類したいクラスの数を \(k\) 個 とおけば、 \(k=2\) のときが二値分類になるということになります。 そして、 \(k>2\) がいわゆる多クラス分類になります。

このように論理的には二値分類は多値分類の特殊ケースと考えられますが、一見すると以下のように別の交差エントロピー誤差関数が使われます。

これはなぜでしょうか?・・・

ということも含めて 交差エントロピー が最終的にクリアになるように数式を丁寧にひもときつつみていきます。

二値分類用の交差エントロピー誤差関数Binary Cross Entropy (バイナリクロスエントロピー)という呼称がつかわれ Deep Learning のフレームワーク等では \(BCE\) の略語で実装されています。
binary は バイナリ と読み、二値とか、二成分とか、二元みたいな意味になります。入力データを「AかAじゃないか」の2通りに見分けるのでその通りな名前ですね)

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2、再掲}
$$

多値分類用の交差エントロピー誤差関数Categorical Cross EntropyMulti-Class Cross Entropy という呼称がつかわれます。

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1、再掲}
$$

さて、今回は、交差エントロピー誤差関数がどのような問題で活躍しているか概観してまいりました。

次回は、分類問題の本質と尤度関数についてみていきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング