[AI数理]徹底的に交差エントロピー(1)

[AI数理]徹底的に交差エントロピー(1)

おはようございます!(株) Qualiteg 研究部です。

今日からは交差エントロピーについて、徹底的に学んでいきたいとおもいます。

交差エントロピー関数の式は2つあるの?

本シリーズではは、機械学習で分類問題の損失関数としてよく使用される交差エントロピー関数をとりあげます。

実はこれまで学んできた 指数関数や対数関数の微分法は、この交差エントロピー関数を深く理解するためのものでした。

交差エントロピーがどのような性質をもっていて、どのように導かれていくのかを理解するのは今後のLLMの仕組み解明でも大いに役立つのでしっかりみていきたいとおもいます!

さて、さっそくですが、

下の \((1)\) は 交差エントロピー関数 です

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1}
$$

下の \((2)\) も、 交差エントロピー関数 です。

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2}
$$

交差エントロピー関数」 で検索すると、だいたい上の2式が紹介されています。

「え?定義が2つあるの?」と素朴な疑問も浮かびますが、実はどちらも同じところから導き出すことができます。

式の単なる暗記よりもどういう素性のものなのか脳ミソに染み込ませたいので、式の導出過程を省略せずに一歩ずつ展開していって、しっかりと概念を理解したいとおもいます。

そのため同じようなことをクドクド、しつこく、繰り返し見て考えていきます!

なお、先にネタバレすると、 \((1)\) 式は 多値分類向け交差エントロピー (多値分類=入力データを複数のクラスのどれかに分類するタスク)に使えるもので、 \((2)\) 式は 二値分類用の交差エントロピー で二値分類用(入力を2つのクラスに分類するタスク)に使えるものです。

\((2)\) 式の二値交差エントロピー関数 は、 \((1)\) 式の多クラス分類用の交差エントロピーを二値分類という特殊ケース用に式展開したもので \((1)\) 式 から簡単に導出することができます。
その展開方法も、のちほど詳しく説明します。

本シリーズで理解したいこと

  • 交差エントロピー関数って2つあるみたいけど、どっちが正解なの? という素朴な疑問が解決する

  • 交差エントロピー(Cross Entropy)と 多値用交差エントロピー(Categorical Cross Entropy)と二値用交差エントロピー(Binary Cross Entropy)の違いと使いどころが理解できる

  • そもそも交差エントロピーって一体何者? どこから導き出されたものなの?が理解できる

1章 分類問題で使う交差エントロピー

ニューラルネットワークで使用する損失関数は多種多様にありますが、分類問題でのド定番は 交差エントロピー誤差関数 だとおもいます。

各種フレームワークにも必ず実装されており、「まず Deep Learning をやってみよう」というシーンでは必ずお世話になります。

分類問題はおおきく2つに分けられます。

  • 二値分類 (2クラス分類)
    • 入力データを2つのクラスのどちらに所属するのかを予測します。
      2クラス分類 ともよびます。
      二値分類は結果が「YES」なのか「No」なのかを予測することができます。
      データサイエンスのチュートリアルで有名な 「タイタニック号の乗客が生存できたか、できなかったか」 も二値分類の問題です。

二値分類の例

  • 「このメールはスパムなのかスパムじゃないのか」
  • 「このお客は買うのか買わないのか」
  • 「この生徒は合格するのか、しないのか」
  • 「映画レビューの感想が肯定的か否定的か」

 

  • 多値分類 (多クラス分類)
    • 入力データが複数あるクラスのどのクラスに所属してるのかを予測します。二値分類とは違い、クラスは複数あってかまいませんが、何個のクラスに分類するかは事前に決めておきます。
      たとえば、入力した画像データが
      「イヌ」「キツネ」「オオカミ」「ネコ」「タヌキ」 の5個のクラスのうちどのクラスに所属するのかを予測する、といった具合になります。

この二値分類と多値分類の学習で使う 損失関数交差エントロピー誤差関数 (cross entropy loss function) です。

多値分類(多クラス分類)と二値分類(2クラス分類)を分けていますが、論理的に考えてみれば、多値分類はその名の通り入力データが複数のクラスのうち、どのクラスに所属するかを予測するものなので、二値分類は多値分類の中に入ります。仮に分類したいクラスの数を \(k\) 個 とおけば、 \(k=2\) のときが二値分類になるということになります。 そして、 \(k>2\) がいわゆる多クラス分類になります。

このように論理的には二値分類は多値分類の特殊ケースと考えられますが、一見すると以下のように別の交差エントロピー誤差関数が使われます。

これはなぜでしょうか?・・・

ということも含めて 交差エントロピー が最終的にクリアになるように数式を丁寧にひもときつつみていきます。

二値分類用の交差エントロピー誤差関数Binary Cross Entropy (バイナリクロスエントロピー)という呼称がつかわれ Deep Learning のフレームワーク等では \(BCE\) の略語で実装されています。
binary は バイナリ と読み、二値とか、二成分とか、二元みたいな意味になります。入力データを「AかAじゃないか」の2通りに見分けるのでその通りな名前ですね)

$$
\ - \frac{1}{N} \sum_{i}^{N} \lbrack t_{i} \log y_{i} + (1- t_{i}) \log (1- y_{i}) \rbrack \tag{2、再掲}
$$

多値分類用の交差エントロピー誤差関数Categorical Cross EntropyMulti-Class Cross Entropy という呼称がつかわれます。

$$
\ - \frac{1}{N} \sum_{i}^{N} \sum_{k}^{K} t_{ik} \log y_{ik} \tag{1、再掲}
$$

さて、今回は、交差エントロピー誤差関数がどのような問題で活躍しているか概観してまいりました。

次回は、分類問題の本質と尤度関数についてみていきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation