[AI数理]徹底的に交差エントロピー(6)

[AI数理]徹底的に交差エントロピー(6)

おはようございます!(株) Qualiteg 研究部です。

今回は、二値分類用の交差エントロピーについてみていきましょう!

7章 二値分類用 交差エントロピー

7-1. 二値分類用 交差エントロピー (データ1件対応版)

さて、ここから、二値分類用の交差エントロピーを導きたいとおもいます。

二値分類は 入力されたデータが 2 つのうちどちらか、を予測するものです。

まず話をシンプルにするために、バッチ版ではなく、式 \((5.2)\) に示した 1件版の交差エントロピーの式を思い出します。

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2、再掲}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

二値分類も多値分類の一種と考えれば、式 \((5.2)\) のままで良いはずです。

つまり、多値分類の場合は \(K \ge 3 \) となりますが、これを二値分類のときは分類数は2なので \(K=2\) となります。

そこで \(K=2\) のときの交差エントロピーを \(BCE\) として、 式 \((5.2)\) 展開すると。

(BCE は Binary Cross Entropy = 二値分類用交差エントロピー の略からとっています)

$$
\begin{aligned}
\ BCE = &- \log L&\
\ = &- \sum_{k=1}^{2} t_{k} \log y_{k}&\
\ = &- (t_{1} \log y_{1} + t_{2} \log y_{2} ) &\
\end{aligned}
$$

のようになりました。

$$
\ BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2} ) \tag{7.1}
$$

ここでは2値分類用のデータとして、冒頭でも紹介した「タイタニック号の乗客が助かったか、助からなかったか」のどちらかを予測する分類問題を考えてみます。

データ参照元は以下となります

Author: Frank E. Harrell Jr., Thomas Cason
Source:?Vanderbilt Biostatistics
(http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html)

まず「助かった」乗客のデータとモデルの予測値が以下のようだった場合、

交差エントロピー \(BCE\) を計算すると

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (1 \cdot \log 0.51 + 0 \cdot \log 0.49 )&\
=&- \log 0.51&\
\end{aligned}
$$

同様に、今度は「助からなかった乗客」をあらわす以下のデータで交差エントロピーを計算します

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (0 \cdot \log 0.56 + 1 \cdot \log 0.44 )&\
=&- \log 0.44&\
\end{aligned}
$$

このように多値分類の作法でも二値分類の交差エントロピーを計算することは当然可能です。

ところで、確率を求める分類問題の場合は予測値の合計値は 1 となります。

また、正解ラベルは正解のときに1、それ以外には0を指定していますので、その合計値も 1 となります。

つまり、二値問題の場合は

$$
y_{1} + y_{2} = 1
$$

$$
t_{1} + t_{2} = 1
$$

となるため、

$$
y_{2} = 1-y_{1}
$$

$$
t_{2} = 1-t_{1}
$$

となります。

これを式 \((7.1)\) で示した \(K=2\) のときの 交差エントロピーの式 \(BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2})\) に代入すると

$$
\begin{aligned}
BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) )&
\end{aligned}
$$

となり、 \(t_{1}\) 、 \({y_{1}}\) だけをつかった式に変形することができます。

$$
BCE=- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) ) \tag{7.2}
$$

さて、式 \((7.2)\) からわかるように、
1件のデータに対して正解ラベルおよび予測値は \(t_{1}\) 、 予測値 \(y_{1}\) だけとなりました。
( \(t_{2}\) や \(y_{2}\) は式変更により無くなりました)

よって正解ラベル \(t_{1}\) 、 予測値 \(y_{1}\) のように 添え字 「 \(_{1}\) 」 を付与する必要もないので、正解ラベルおよび予測値は \(t\) 、 \(y\) と添え字なしにします。

こうしてできた式 \((7.3)\) が 二値分類用の交差エントロピー関数(データ1件分)となります。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3}
$$

$$
t:正解ラベル y:予測値
$$

二値分類で \((7.3)\) を損失関数として使うモデルの入力データおよび正解ラベル、予測値は以下のようになります。

この入力データはタイタニックに乗船していて 「助かった」= \(t=1\) という正解ラベルがつきました

つまり多値分類のときは、分類数のぶんだけ正解ラベルが \(t_{1}\) 、 \(t_{2}\) 、、、のようにありましたが、二値分類の場合は 入力データを \(1\) と予測させたい場合は \(t=1\) 、入力データを \(0\) と予測させたい場合は \(t=0\) となります。

7-2. 二値分類用 交差エントロピー (データN件対応版)

さて式 \((7.3)\) はデータ1件版の交差エントロピー関数でしたが、これをN件のデータに対応した二値分類用交差エントロピー関数に拡張します。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3、再掲}
$$

バッチ学習で使う複数件の訓練データは以下のようになります。ここでは4件ぶん表示しました。

データ番号 \(i\) を付与しています。前述したとおし二値分類用の正解ラベル、予測値はデータ1件につき1件なので、正解ラベルと予測値はデータ番号 \(i\) を付与すれば、一意に識別できるようになります。

そこで、正解ラベル \(t\) は データ番号 \(i\) を添え字として追加して \(t_{i}\) に。予測値 \(y\) にも データ番号 \(i\) を添え字として追加して \(y_{i}\) となります。

ということで、1件あたりの二値分類用交差エントロピー関数は、データ番号 \(i\) の添え字を追加して以下のようになります。

$$
BCE_{i}=- (t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) )
$$

あとはこれを データ数 N 件分合計したあと、データ数の影響を除くために N でわってあげれば、多値分類のときとおなじ バッチ対応版の二値分類用交差エントロピーの計算式となります。

$$
\begin{aligned}
BCE=&- \sum_{i=1}^{N} BCE_{i}&\
&- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack &
\end{aligned}
$$

ということで、二値分類用交差エントロピー(バッチ対応バージョン) を導くことができました。

$$
BCE=- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack \tag{7.4}
$$

$$
t_{i}: i番目のデータの正解ラベル  y_{i}:i番目のデータの予測値
$$

今回はいかがでしたでしょうか

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部