[AI数理]徹底的に交差エントロピー(6)

[AI数理]徹底的に交差エントロピー(6)

おはようございます!(株) Qualiteg 研究部です。

今回は、二値分類用の交差エントロピーについてみていきましょう!

7章 二値分類用 交差エントロピー

7-1. 二値分類用 交差エントロピー (データ1件対応版)

さて、ここから、二値分類用の交差エントロピーを導きたいとおもいます。

二値分類は 入力されたデータが 2 つのうちどちらか、を予測するものです。

まず話をシンプルにするために、バッチ版ではなく、式 \((5.2)\) に示した 1件版の交差エントロピーの式を思い出します。

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2、再掲}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

二値分類も多値分類の一種と考えれば、式 \((5.2)\) のままで良いはずです。

つまり、多値分類の場合は \(K \ge 3 \) となりますが、これを二値分類のときは分類数は2なので \(K=2\) となります。

そこで \(K=2\) のときの交差エントロピーを \(BCE\) として、 式 \((5.2)\) 展開すると。

(BCE は Binary Cross Entropy = 二値分類用交差エントロピー の略からとっています)

$$
\begin{aligned}
\ BCE = &- \log L&\
\ = &- \sum_{k=1}^{2} t_{k} \log y_{k}&\
\ = &- (t_{1} \log y_{1} + t_{2} \log y_{2} ) &\
\end{aligned}
$$

のようになりました。

$$
\ BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2} ) \tag{7.1}
$$

ここでは2値分類用のデータとして、冒頭でも紹介した「タイタニック号の乗客が助かったか、助からなかったか」のどちらかを予測する分類問題を考えてみます。

データ参照元は以下となります

Author: Frank E. Harrell Jr., Thomas Cason
Source:?Vanderbilt Biostatistics
(http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html)

まず「助かった」乗客のデータとモデルの予測値が以下のようだった場合、

交差エントロピー \(BCE\) を計算すると

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (1 \cdot \log 0.51 + 0 \cdot \log 0.49 )&\
=&- \log 0.51&\
\end{aligned}
$$

同様に、今度は「助からなかった乗客」をあらわす以下のデータで交差エントロピーを計算します

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (0 \cdot \log 0.56 + 1 \cdot \log 0.44 )&\
=&- \log 0.44&\
\end{aligned}
$$

このように多値分類の作法でも二値分類の交差エントロピーを計算することは当然可能です。

ところで、確率を求める分類問題の場合は予測値の合計値は 1 となります。

また、正解ラベルは正解のときに1、それ以外には0を指定していますので、その合計値も 1 となります。

つまり、二値問題の場合は

$$
y_{1} + y_{2} = 1
$$

$$
t_{1} + t_{2} = 1
$$

となるため、

$$
y_{2} = 1-y_{1}
$$

$$
t_{2} = 1-t_{1}
$$

となります。

これを式 \((7.1)\) で示した \(K=2\) のときの 交差エントロピーの式 \(BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2})\) に代入すると

$$
\begin{aligned}
BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) )&
\end{aligned}
$$

となり、 \(t_{1}\) 、 \({y_{1}}\) だけをつかった式に変形することができます。

$$
BCE=- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) ) \tag{7.2}
$$

さて、式 \((7.2)\) からわかるように、
1件のデータに対して正解ラベルおよび予測値は \(t_{1}\) 、 予測値 \(y_{1}\) だけとなりました。
( \(t_{2}\) や \(y_{2}\) は式変更により無くなりました)

よって正解ラベル \(t_{1}\) 、 予測値 \(y_{1}\) のように 添え字 「 \(_{1}\) 」 を付与する必要もないので、正解ラベルおよび予測値は \(t\) 、 \(y\) と添え字なしにします。

こうしてできた式 \((7.3)\) が 二値分類用の交差エントロピー関数(データ1件分)となります。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3}
$$

$$
t:正解ラベル y:予測値
$$

二値分類で \((7.3)\) を損失関数として使うモデルの入力データおよび正解ラベル、予測値は以下のようになります。

この入力データはタイタニックに乗船していて 「助かった」= \(t=1\) という正解ラベルがつきました

つまり多値分類のときは、分類数のぶんだけ正解ラベルが \(t_{1}\) 、 \(t_{2}\) 、、、のようにありましたが、二値分類の場合は 入力データを \(1\) と予測させたい場合は \(t=1\) 、入力データを \(0\) と予測させたい場合は \(t=0\) となります。

7-2. 二値分類用 交差エントロピー (データN件対応版)

さて式 \((7.3)\) はデータ1件版の交差エントロピー関数でしたが、これをN件のデータに対応した二値分類用交差エントロピー関数に拡張します。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3、再掲}
$$

バッチ学習で使う複数件の訓練データは以下のようになります。ここでは4件ぶん表示しました。

データ番号 \(i\) を付与しています。前述したとおし二値分類用の正解ラベル、予測値はデータ1件につき1件なので、正解ラベルと予測値はデータ番号 \(i\) を付与すれば、一意に識別できるようになります。

そこで、正解ラベル \(t\) は データ番号 \(i\) を添え字として追加して \(t_{i}\) に。予測値 \(y\) にも データ番号 \(i\) を添え字として追加して \(y_{i}\) となります。

ということで、1件あたりの二値分類用交差エントロピー関数は、データ番号 \(i\) の添え字を追加して以下のようになります。

$$
BCE_{i}=- (t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) )
$$

あとはこれを データ数 N 件分合計したあと、データ数の影響を除くために N でわってあげれば、多値分類のときとおなじ バッチ対応版の二値分類用交差エントロピーの計算式となります。

$$
\begin{aligned}
BCE=&- \sum_{i=1}^{N} BCE_{i}&\
&- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack &
\end{aligned}
$$

ということで、二値分類用交差エントロピー(バッチ対応バージョン) を導くことができました。

$$
BCE=- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack \tag{7.4}
$$

$$
t_{i}: i番目のデータの正解ラベル  y_{i}:i番目のデータの予測値
$$

今回はいかがでしたでしょうか

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部
サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング