[AI数理]徹底的に交差エントロピー(6)

[AI数理]徹底的に交差エントロピー(6)

おはようございます!(株) Qualiteg 研究部です。

今回は、二値分類用の交差エントロピーについてみていきましょう!

7章 二値分類用 交差エントロピー

7-1. 二値分類用 交差エントロピー (データ1件対応版)

さて、ここから、二値分類用の交差エントロピーを導きたいとおもいます。

二値分類は 入力されたデータが 2 つのうちどちらか、を予測するものです。

まず話をシンプルにするために、バッチ版ではなく、式 \((5.2)\) に示した 1件版の交差エントロピーの式を思い出します。

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2、再掲}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

二値分類も多値分類の一種と考えれば、式 \((5.2)\) のままで良いはずです。

つまり、多値分類の場合は \(K \ge 3 \) となりますが、これを二値分類のときは分類数は2なので \(K=2\) となります。

そこで \(K=2\) のときの交差エントロピーを \(BCE\) として、 式 \((5.2)\) 展開すると。

(BCE は Binary Cross Entropy = 二値分類用交差エントロピー の略からとっています)

$$
\begin{aligned}
\ BCE = &- \log L&\
\ = &- \sum_{k=1}^{2} t_{k} \log y_{k}&\
\ = &- (t_{1} \log y_{1} + t_{2} \log y_{2} ) &\
\end{aligned}
$$

のようになりました。

$$
\ BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2} ) \tag{7.1}
$$

ここでは2値分類用のデータとして、冒頭でも紹介した「タイタニック号の乗客が助かったか、助からなかったか」のどちらかを予測する分類問題を考えてみます。

データ参照元は以下となります

Author: Frank E. Harrell Jr., Thomas Cason
Source:?Vanderbilt Biostatistics
(http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html)

まず「助かった」乗客のデータとモデルの予測値が以下のようだった場合、

交差エントロピー \(BCE\) を計算すると

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (1 \cdot \log 0.51 + 0 \cdot \log 0.49 )&\
=&- \log 0.51&\
\end{aligned}
$$

同様に、今度は「助からなかった乗客」をあらわす以下のデータで交差エントロピーを計算します

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (0 \cdot \log 0.56 + 1 \cdot \log 0.44 )&\
=&- \log 0.44&\
\end{aligned}
$$

このように多値分類の作法でも二値分類の交差エントロピーを計算することは当然可能です。

ところで、確率を求める分類問題の場合は予測値の合計値は 1 となります。

また、正解ラベルは正解のときに1、それ以外には0を指定していますので、その合計値も 1 となります。

つまり、二値問題の場合は

$$
y_{1} + y_{2} = 1
$$

$$
t_{1} + t_{2} = 1
$$

となるため、

$$
y_{2} = 1-y_{1}
$$

$$
t_{2} = 1-t_{1}
$$

となります。

これを式 \((7.1)\) で示した \(K=2\) のときの 交差エントロピーの式 \(BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2})\) に代入すると

$$
\begin{aligned}
BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) )&
\end{aligned}
$$

となり、 \(t_{1}\) 、 \({y_{1}}\) だけをつかった式に変形することができます。

$$
BCE=- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) ) \tag{7.2}
$$

さて、式 \((7.2)\) からわかるように、
1件のデータに対して正解ラベルおよび予測値は \(t_{1}\) 、 予測値 \(y_{1}\) だけとなりました。
( \(t_{2}\) や \(y_{2}\) は式変更により無くなりました)

よって正解ラベル \(t_{1}\) 、 予測値 \(y_{1}\) のように 添え字 「 \(_{1}\) 」 を付与する必要もないので、正解ラベルおよび予測値は \(t\) 、 \(y\) と添え字なしにします。

こうしてできた式 \((7.3)\) が 二値分類用の交差エントロピー関数(データ1件分)となります。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3}
$$

$$
t:正解ラベル y:予測値
$$

二値分類で \((7.3)\) を損失関数として使うモデルの入力データおよび正解ラベル、予測値は以下のようになります。

この入力データはタイタニックに乗船していて 「助かった」= \(t=1\) という正解ラベルがつきました

つまり多値分類のときは、分類数のぶんだけ正解ラベルが \(t_{1}\) 、 \(t_{2}\) 、、、のようにありましたが、二値分類の場合は 入力データを \(1\) と予測させたい場合は \(t=1\) 、入力データを \(0\) と予測させたい場合は \(t=0\) となります。

7-2. 二値分類用 交差エントロピー (データN件対応版)

さて式 \((7.3)\) はデータ1件版の交差エントロピー関数でしたが、これをN件のデータに対応した二値分類用交差エントロピー関数に拡張します。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3、再掲}
$$

バッチ学習で使う複数件の訓練データは以下のようになります。ここでは4件ぶん表示しました。

データ番号 \(i\) を付与しています。前述したとおし二値分類用の正解ラベル、予測値はデータ1件につき1件なので、正解ラベルと予測値はデータ番号 \(i\) を付与すれば、一意に識別できるようになります。

そこで、正解ラベル \(t\) は データ番号 \(i\) を添え字として追加して \(t_{i}\) に。予測値 \(y\) にも データ番号 \(i\) を添え字として追加して \(y_{i}\) となります。

ということで、1件あたりの二値分類用交差エントロピー関数は、データ番号 \(i\) の添え字を追加して以下のようになります。

$$
BCE_{i}=- (t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) )
$$

あとはこれを データ数 N 件分合計したあと、データ数の影響を除くために N でわってあげれば、多値分類のときとおなじ バッチ対応版の二値分類用交差エントロピーの計算式となります。

$$
\begin{aligned}
BCE=&- \sum_{i=1}^{N} BCE_{i}&\
&- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack &
\end{aligned}
$$

ということで、二値分類用交差エントロピー(バッチ対応バージョン) を導くことができました。

$$
BCE=- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack \tag{7.4}
$$

$$
t_{i}: i番目のデータの正解ラベル  y_{i}:i番目のデータの予測値
$$

今回はいかがでしたでしょうか

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング