[AI数理]徹底的に交差エントロピー(6)

[AI数理]徹底的に交差エントロピー(6)

おはようございます!(株) Qualiteg 研究部です。

今回は、二値分類用の交差エントロピーについてみていきましょう!

7章 二値分類用 交差エントロピー

7-1. 二値分類用 交差エントロピー (データ1件対応版)

さて、ここから、二値分類用の交差エントロピーを導きたいとおもいます。

二値分類は 入力されたデータが 2 つのうちどちらか、を予測するものです。

まず話をシンプルにするために、バッチ版ではなく、式 \((5.2)\) に示した 1件版の交差エントロピーの式を思い出します。

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2、再掲}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

二値分類も多値分類の一種と考えれば、式 \((5.2)\) のままで良いはずです。

つまり、多値分類の場合は \(K \ge 3 \) となりますが、これを二値分類のときは分類数は2なので \(K=2\) となります。

そこで \(K=2\) のときの交差エントロピーを \(BCE\) として、 式 \((5.2)\) 展開すると。

(BCE は Binary Cross Entropy = 二値分類用交差エントロピー の略からとっています)

$$
\begin{aligned}
\ BCE = &- \log L&\
\ = &- \sum_{k=1}^{2} t_{k} \log y_{k}&\
\ = &- (t_{1} \log y_{1} + t_{2} \log y_{2} ) &\
\end{aligned}
$$

のようになりました。

$$
\ BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2} ) \tag{7.1}
$$

ここでは2値分類用のデータとして、冒頭でも紹介した「タイタニック号の乗客が助かったか、助からなかったか」のどちらかを予測する分類問題を考えてみます。

データ参照元は以下となります

Author: Frank E. Harrell Jr., Thomas Cason
Source:?Vanderbilt Biostatistics
(http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.html)

まず「助かった」乗客のデータとモデルの予測値が以下のようだった場合、

交差エントロピー \(BCE\) を計算すると

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (1 \cdot \log 0.51 + 0 \cdot \log 0.49 )&\
=&- \log 0.51&\
\end{aligned}
$$

同様に、今度は「助からなかった乗客」をあらわす以下のデータで交差エントロピーを計算します

$$
\begin{aligned}
\ \ BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (0 \cdot \log 0.56 + 1 \cdot \log 0.44 )&\
=&- \log 0.44&\
\end{aligned}
$$

このように多値分類の作法でも二値分類の交差エントロピーを計算することは当然可能です。

ところで、確率を求める分類問題の場合は予測値の合計値は 1 となります。

また、正解ラベルは正解のときに1、それ以外には0を指定していますので、その合計値も 1 となります。

つまり、二値問題の場合は

$$
y_{1} + y_{2} = 1
$$

$$
t_{1} + t_{2} = 1
$$

となるため、

$$
y_{2} = 1-y_{1}
$$

$$
t_{2} = 1-t_{1}
$$

となります。

これを式 \((7.1)\) で示した \(K=2\) のときの 交差エントロピーの式 \(BCE =- (t_{1} \log y_{1} + t_{2} \log y_{2})\) に代入すると

$$
\begin{aligned}
BCE =&- (t_{1} \log y_{1} + t_{2} \log y_{2} )&\
=&- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) )&
\end{aligned}
$$

となり、 \(t_{1}\) 、 \({y_{1}}\) だけをつかった式に変形することができます。

$$
BCE=- (t_{1} \log y_{1} + (1-t_{1}) \log (1-y_{1}) ) \tag{7.2}
$$

さて、式 \((7.2)\) からわかるように、
1件のデータに対して正解ラベルおよび予測値は \(t_{1}\) 、 予測値 \(y_{1}\) だけとなりました。
( \(t_{2}\) や \(y_{2}\) は式変更により無くなりました)

よって正解ラベル \(t_{1}\) 、 予測値 \(y_{1}\) のように 添え字 「 \(_{1}\) 」 を付与する必要もないので、正解ラベルおよび予測値は \(t\) 、 \(y\) と添え字なしにします。

こうしてできた式 \((7.3)\) が 二値分類用の交差エントロピー関数(データ1件分)となります。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3}
$$

$$
t:正解ラベル y:予測値
$$

二値分類で \((7.3)\) を損失関数として使うモデルの入力データおよび正解ラベル、予測値は以下のようになります。

この入力データはタイタニックに乗船していて 「助かった」= \(t=1\) という正解ラベルがつきました

つまり多値分類のときは、分類数のぶんだけ正解ラベルが \(t_{1}\) 、 \(t_{2}\) 、、、のようにありましたが、二値分類の場合は 入力データを \(1\) と予測させたい場合は \(t=1\) 、入力データを \(0\) と予測させたい場合は \(t=0\) となります。

7-2. 二値分類用 交差エントロピー (データN件対応版)

さて式 \((7.3)\) はデータ1件版の交差エントロピー関数でしたが、これをN件のデータに対応した二値分類用交差エントロピー関数に拡張します。

$$
BCE=- (t \log y + (1-t) \log (1-y) ) \tag{7.3、再掲}
$$

バッチ学習で使う複数件の訓練データは以下のようになります。ここでは4件ぶん表示しました。

データ番号 \(i\) を付与しています。前述したとおし二値分類用の正解ラベル、予測値はデータ1件につき1件なので、正解ラベルと予測値はデータ番号 \(i\) を付与すれば、一意に識別できるようになります。

そこで、正解ラベル \(t\) は データ番号 \(i\) を添え字として追加して \(t_{i}\) に。予測値 \(y\) にも データ番号 \(i\) を添え字として追加して \(y_{i}\) となります。

ということで、1件あたりの二値分類用交差エントロピー関数は、データ番号 \(i\) の添え字を追加して以下のようになります。

$$
BCE_{i}=- (t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) )
$$

あとはこれを データ数 N 件分合計したあと、データ数の影響を除くために N でわってあげれば、多値分類のときとおなじ バッチ対応版の二値分類用交差エントロピーの計算式となります。

$$
\begin{aligned}
BCE=&- \sum_{i=1}^{N} BCE_{i}&\
&- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack &
\end{aligned}
$$

ということで、二値分類用交差エントロピー(バッチ対応バージョン) を導くことができました。

$$
BCE=- \sum_{i=1}^{N} \lbrack t_{i} \log y_{i} + (1-t_{i}) \log (1-y_{i}) \rbrack \tag{7.4}
$$

$$
t_{i}: i番目のデータの正解ラベル  y_{i}:i番目のデータの予測値
$$

今回はいかがでしたでしょうか

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

こんにちは! Qualitegコンサルティングです! 前回の第1回では、サブスクリプションビジネスの基本構造と、LTV・ユニットエコノミクスという革命的な考え方を解説しました。「LTV > 3 × CAC」という黄金律、覚えていますか? サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイドなぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。

By Qualiteg コンサルティング
Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング