[AI数理]徹底的に交差エントロピー(7)

[AI数理]徹底的に交差エントロピー(7)

おはようございます!(株) Qualiteg 研究部です。

今回は、交差エントロピーの計算をベクトルや行列で表現する方法について説明します!

8章 交差エントロピーとベクトル演算

そもそも、なぜ、交差エントロピーをベクトルや行列で表現したいのでしょうか?

それは、実際にニューラルネットワークをコンピュータープログラムとして実装するときに、訓練データや予測値はベクトル(1次元配列)や行列(2次元配列)といったN階テンソル(N次元配列)の形式で取り扱われるからです。

なぜベクトルや行列かといえば、ニューラルネットワークの実用的な計算をするときにはデータを1件とりだしては、1件計算する のではなく、多くのデータをベクトル(1次元配列)や行列(2次元配列)やそれ以上の多次元配列に詰めたのちに、まとめてドカっと計算するからです。

(まとめてドカっと計算するのが得意な GPU があるからこそ、これだけ Deep Learning が進展した、ともいえます)

そこで、今までで導出してきた交差エントロピーの計算をコンピュータで実装するときに備えて、 1次元配列 にしてみます。

プログラムコード上は単なる1次元配列ですが、これを配列の各値を成分にもつ ベクトル と見立てることにします。

正解ラベル \(t_{k}\) を要素に含む ベクトルを \(\boldsymbol{t}\) とすると、以下のような成分を含むベクトルになります。

$$
\boldsymbol{t} =
\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
$$

この場合、横に成分(=数字)をならべているので、 行ベクトル(または 横ベクトル) と呼びます。

予測値 \(y_{k}\) も同様に \(\boldsymbol{y}\) として 行ベクトル にあらわすと

$$
\boldsymbol{y} =
\begin{pmatrix}
y_{1} & y_{2} & y_{3}
\end{pmatrix}
$$

となります。

さらに、交差エントロピーの計算の際、 \(\boldsymbol{y}\) の成分は 対数 \(\log\) をとることになるので、 \(\boldsymbol{y}\) の成分に \(\log\) をとったものを \(\boldsymbol{y_{l}}\) と定義すると、以下のようになります。

$$
\boldsymbol{y_{l}} =
\begin{pmatrix}
\log y_{1} & \log y_{2} & \log y_{3}
\end{pmatrix}
$$

ここで 交差エントロピー \(E\) を思い出してみます。

$$
\begin{aligned}
\ E = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
\end{aligned}
$$

この式にあらわれる \(( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3})\) をよく見てみましょう。これは、ベクトル \(\boldsymbol{t}\) と ベクトル \(\boldsymbol{y_{l}}\) のドット積(内積)となっているのがわかります。

ドット積(内積)は同じ添え字の成分どうしの積の足し算です。

$$
\begin{aligned}
\ E = &- \boldsymbol{t} \cdot \boldsymbol{y_{l}}& \
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
\end{aligned}
$$

1つ注意したい点は、ベクトルの場合は 成分どうしの積の足し算と定義すればよいですが、ベクトルではなく、行列(2次元配列)どうしのドット積を計算するときには、行列の形状を意識しなければいけません。

たとえば、縦横 \(2 \times 3\) の形状をもつ行列 $\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
\end{pmatrix}\( と 縦横 \)3 \times 2\( の形状をもつ行列 \)\begin{pmatrix}
7 & 8 \
9 & 10 \
11 & 12 \
\end{pmatrix}$ のドット積

$$
\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 8 \
9 & 10 \
11 & 12 \
\end{pmatrix}
$$

は、以下のように計算します。

左側の行列の1行目の横一列と、右側の行列の1列目の縦一列の成分どうしの積を足していきます。

次は左側の行列の2行目と、右側の行列の1列目の成分どうしの積を足す、、、以降同様に計算していきます。

このように順に計算していくと結果は以下のようになります。

$$
\begin{aligned}
\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 8 \
9 & 10 \
11 & 12 \
\end{pmatrix}=&
\begin{pmatrix}
1 \times 7 + 2 \times 9 + 3 \times 11 & 1 \times 8 + 2 \times 10 + 3 \times 12 \
4 \times 7 + 5 \times 9 + 6 \times 11 & 4 \times 8 + 5 \times 10 + 6 \times 12
\end{pmatrix}&\
=&
\begin{pmatrix}
58 & 64 \
139 & 154 \
\end{pmatrix}&
\end{aligned}
$$

この例からわかる通り縦横 \(2 \times 3\) の形状をもつ行列と 縦横 \(3 \times 2\) の形状をもつ の行列のドット積の結果は \(2 \times 2\) の行列となります。

つまり \(m \times n\) と \(n \times l\) のドット積の形状は \(m \times l\) となります。
またドット積を計算するには、左側の行列の行数と、右側の行列の列数が一致している必要があります。

さて、行列のドット積の計算の仕方を見たところで、さきほどのベクトル同士のドット積を再確認しましょう。

正解ラベルを示す行ベクトルを \(\boldsymbol{t}\) と、予測値に \(\log\) をとった行ベクトル \(\boldsymbol{y_{l}}\) はそれぞれ以下のとおりでしたが、

$$
\boldsymbol{t} =
\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
$$

$$
\boldsymbol{y_{l}} =
\begin{pmatrix}
\log y_{1} & \log y_{2} & \log y_{3}
\end{pmatrix}
$$

さきほどの行列のドット積ルールにしたがって計算しようとすると、横一列並んでいる形状をしている行ベクトル同士の計算はできないことがわかります。

つまり、

$$
\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\log y_{1} & \log y_{2} & \log y_{3}
\end{pmatrix}
$$

はこのままでは計算できないということになります。
つまり、この2つの行ベクトルを行列とみなすと、どちらも形状が \(1 \times 3\) となっています。

ですので、ドット積ができる行列形状である \(m \times n\) と \(n \times l\) のカタチにするには、ベクトル \(\boldsymbol{y_{l}}\) を行ベクトル(横ベクトル)から列ベクトル(縦ベクトル)にすればよさそうです。

\(\boldsymbol{y_{l}}\) の成分の行と列を入れ替えた列ベクトル \(\boldsymbol{y_{l}^\mathsf{T} }\) は以下のようになります。

(\({\mathsf{T} }\) は転置を意味します。転置とはある行列の成分の列と縦を入れ)替えた行列です。

$$
\boldsymbol{y_{l}^\mathsf{T} } =
\begin{pmatrix}
\log y_{1} \ \log y_{2} \ \log y_{3}
\end{pmatrix}
$$

これで、ドット積の作法で計算することができるようになりました。

さきほどの、ドット積を使った交差エントロピーの計算式でみてみると、

$$
\begin{aligned}
\ E = &- \boldsymbol{t} \cdot \boldsymbol{y_{l}^\mathsf{T} }& \
&=-\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\log y_{1} \ \log y_{2} \ \log y_{3}
\end{pmatrix}& \
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
\end{aligned}
$$

これで、交差エントロピーを行列の計算として求めることができました。

(ちなみに、ベクトル同士のドット積は内積と同じなので計算結果はスカラー(数値)になります。)

今回はいかがでしたでしょうか

冒頭でもふれたとおり、データをベクトルや行列に見立ててドット積を計算したのは、1件ずつ計算をしてループさせるような方式よりも、ベクトルや行列にデータをまとめてイッキに計算したほうが GPU など並列計算が得意な環境では圧倒的に効率が良いためです。

ベクトルや行列にするとコンピューター(とりわけ GPU)との相性がよく計算効率・スピードを高める効果が期待できるからこそこのようなテクニックを用いていますますので、それこそが重要であり、それ以上の数学的な意味・意義はそんなに考えなくてよいのかなというところでしょうか。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/

Read more

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部
企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

こんにちは! ChatGPTやClaudeといった生成AIサービスが業務に浸透し始めた今、 「AIに機密情報を送ってしまうリスク」 が新たなセキュリティ課題として浮上しています。 この課題に向き合う中で、私たちは改めて「企業のセキュリティアーキテクチャはどう変遷してきたのか」を振り返る機会がありました。 すると、ある疑問が浮かんできます。 「なんでこんなに複雑になってるんだっけ?」 企業のセキュリティ担当者なら、一度は思ったことがあるのではないでしょうか。 アルファベット3〜4文字の製品が乱立し、それぞれが微妙に重複した機能を持ち、設定は複雑化し、コストは膨らみ続けています。 当社ではAIセキュリティ関連プロダクトをご提供しておりますが、AI時代のセキュリティを考える上でも、この歴史を理解することは重要ではないかと考えました。 本記事では、企業ネットワークセキュリティの変遷を振り返りながら、「なぜこうなったのか」を整理してみたいと思います。 第1章:観測点を集約できた時代 ― オンプレAD + Proxy(〜2010年代前半) 統制しやすかったモデル かつ

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

こんにちは。 —— 2003年のSOAから、2026年のAIへ —— この記事は、過去の技術動向を振り返り、そこから学べる教訓について考察してみたものです。 歴史は常に、後から見れば明らかなことが、当時は見えなかったという教訓を与えてくれます。 そして、今私たちが「正しい」と信じていることもまた、20年後には違う評価を受けているかもしれません。 だからこそ、振り返ることには意味があるとおもいます。同じ轍を踏まないために。 はじめに:20年前の熱狂を覚えていますか 2000年代初頭。 私はSOA(サービス指向アーキテクチャ)に本気で取り組んでいました。 当時、SOAは「次世代のエンタープライズアーキテクチャ」として、業界全体が熱狂していました。 カンファレンスに行けば満員御礼、ベンダーのブースには人だかり、書店にも関連の書籍がちらほらと。 SOAP、SOAP with attachments、JAX-RPC、WS-Security、WS-ReliableMessaging、WS-AtomicTransaction... 仕様書の山と格闘する日々でした。 あれから

By Qualiteg コンサルティング
DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部