[AI数理]徹底的に交差エントロピー(7)

[AI数理]徹底的に交差エントロピー(7)

おはようございます!(株) Qualiteg 研究部です。

今回は、交差エントロピーの計算をベクトルや行列で表現する方法について説明します!

8章 交差エントロピーとベクトル演算

そもそも、なぜ、交差エントロピーをベクトルや行列で表現したいのでしょうか?

それは、実際にニューラルネットワークをコンピュータープログラムとして実装するときに、訓練データや予測値はベクトル(1次元配列)や行列(2次元配列)といったN階テンソル(N次元配列)の形式で取り扱われるからです。

なぜベクトルや行列かといえば、ニューラルネットワークの実用的な計算をするときにはデータを1件とりだしては、1件計算する のではなく、多くのデータをベクトル(1次元配列)や行列(2次元配列)やそれ以上の多次元配列に詰めたのちに、まとめてドカっと計算するからです。

(まとめてドカっと計算するのが得意な GPU があるからこそ、これだけ Deep Learning が進展した、ともいえます)

そこで、今までで導出してきた交差エントロピーの計算をコンピュータで実装するときに備えて、 1次元配列 にしてみます。

プログラムコード上は単なる1次元配列ですが、これを配列の各値を成分にもつ ベクトル と見立てることにします。

正解ラベル \(t_{k}\) を要素に含む ベクトルを \(\boldsymbol{t}\) とすると、以下のような成分を含むベクトルになります。

$$
\boldsymbol{t} =
\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
$$

この場合、横に成分(=数字)をならべているので、 行ベクトル(または 横ベクトル) と呼びます。

予測値 \(y_{k}\) も同様に \(\boldsymbol{y}\) として 行ベクトル にあらわすと

$$
\boldsymbol{y} =
\begin{pmatrix}
y_{1} & y_{2} & y_{3}
\end{pmatrix}
$$

となります。

さらに、交差エントロピーの計算の際、 \(\boldsymbol{y}\) の成分は 対数 \(\log\) をとることになるので、 \(\boldsymbol{y}\) の成分に \(\log\) をとったものを \(\boldsymbol{y_{l}}\) と定義すると、以下のようになります。

$$
\boldsymbol{y_{l}} =
\begin{pmatrix}
\log y_{1} & \log y_{2} & \log y_{3}
\end{pmatrix}
$$

ここで 交差エントロピー \(E\) を思い出してみます。

$$
\begin{aligned}
\ E = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
\end{aligned}
$$

この式にあらわれる \(( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3})\) をよく見てみましょう。これは、ベクトル \(\boldsymbol{t}\) と ベクトル \(\boldsymbol{y_{l}}\) のドット積(内積)となっているのがわかります。

ドット積(内積)は同じ添え字の成分どうしの積の足し算です。

$$
\begin{aligned}
\ E = &- \boldsymbol{t} \cdot \boldsymbol{y_{l}}& \
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
\end{aligned}
$$

1つ注意したい点は、ベクトルの場合は 成分どうしの積の足し算と定義すればよいですが、ベクトルではなく、行列(2次元配列)どうしのドット積を計算するときには、行列の形状を意識しなければいけません。

たとえば、縦横 \(2 \times 3\) の形状をもつ行列 $\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
\end{pmatrix}\( と 縦横 \)3 \times 2\( の形状をもつ行列 \)\begin{pmatrix}
7 & 8 \
9 & 10 \
11 & 12 \
\end{pmatrix}$ のドット積

$$
\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 8 \
9 & 10 \
11 & 12 \
\end{pmatrix}
$$

は、以下のように計算します。

左側の行列の1行目の横一列と、右側の行列の1列目の縦一列の成分どうしの積を足していきます。

次は左側の行列の2行目と、右側の行列の1列目の成分どうしの積を足す、、、以降同様に計算していきます。

このように順に計算していくと結果は以下のようになります。

$$
\begin{aligned}
\begin{pmatrix}
1 & 2 & 3 \
4 & 5 & 6 \
\end{pmatrix}
\cdot
\begin{pmatrix}
7 & 8 \
9 & 10 \
11 & 12 \
\end{pmatrix}=&
\begin{pmatrix}
1 \times 7 + 2 \times 9 + 3 \times 11 & 1 \times 8 + 2 \times 10 + 3 \times 12 \
4 \times 7 + 5 \times 9 + 6 \times 11 & 4 \times 8 + 5 \times 10 + 6 \times 12
\end{pmatrix}&\
=&
\begin{pmatrix}
58 & 64 \
139 & 154 \
\end{pmatrix}&
\end{aligned}
$$

この例からわかる通り縦横 \(2 \times 3\) の形状をもつ行列と 縦横 \(3 \times 2\) の形状をもつ の行列のドット積の結果は \(2 \times 2\) の行列となります。

つまり \(m \times n\) と \(n \times l\) のドット積の形状は \(m \times l\) となります。
またドット積を計算するには、左側の行列の行数と、右側の行列の列数が一致している必要があります。

さて、行列のドット積の計算の仕方を見たところで、さきほどのベクトル同士のドット積を再確認しましょう。

正解ラベルを示す行ベクトルを \(\boldsymbol{t}\) と、予測値に \(\log\) をとった行ベクトル \(\boldsymbol{y_{l}}\) はそれぞれ以下のとおりでしたが、

$$
\boldsymbol{t} =
\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
$$

$$
\boldsymbol{y_{l}} =
\begin{pmatrix}
\log y_{1} & \log y_{2} & \log y_{3}
\end{pmatrix}
$$

さきほどの行列のドット積ルールにしたがって計算しようとすると、横一列並んでいる形状をしている行ベクトル同士の計算はできないことがわかります。

つまり、

$$
\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\log y_{1} & \log y_{2} & \log y_{3}
\end{pmatrix}
$$

はこのままでは計算できないということになります。
つまり、この2つの行ベクトルを行列とみなすと、どちらも形状が \(1 \times 3\) となっています。

ですので、ドット積ができる行列形状である \(m \times n\) と \(n \times l\) のカタチにするには、ベクトル \(\boldsymbol{y_{l}}\) を行ベクトル(横ベクトル)から列ベクトル(縦ベクトル)にすればよさそうです。

\(\boldsymbol{y_{l}}\) の成分の行と列を入れ替えた列ベクトル \(\boldsymbol{y_{l}^\mathsf{T} }\) は以下のようになります。

(\({\mathsf{T} }\) は転置を意味します。転置とはある行列の成分の列と縦を入れ)替えた行列です。

$$
\boldsymbol{y_{l}^\mathsf{T} } =
\begin{pmatrix}
\log y_{1} \ \log y_{2} \ \log y_{3}
\end{pmatrix}
$$

これで、ドット積の作法で計算することができるようになりました。

さきほどの、ドット積を使った交差エントロピーの計算式でみてみると、

$$
\begin{aligned}
\ E = &- \boldsymbol{t} \cdot \boldsymbol{y_{l}^\mathsf{T} }& \
&=-\begin{pmatrix}
t_{1} & t_{2} & t_{3}
\end{pmatrix}
\cdot
\begin{pmatrix}
\log y_{1} \ \log y_{2} \ \log y_{3}
\end{pmatrix}& \
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
\end{aligned}
$$

これで、交差エントロピーを行列の計算として求めることができました。

(ちなみに、ベクトル同士のドット積は内積と同じなので計算結果はスカラー(数値)になります。)

今回はいかがでしたでしょうか

冒頭でもふれたとおり、データをベクトルや行列に見立ててドット積を計算したのは、1件ずつ計算をしてループさせるような方式よりも、ベクトルや行列にデータをまとめてイッキに計算したほうが GPU など並列計算が得意な環境では圧倒的に効率が良いためです。

ベクトルや行列にするとコンピューター(とりわけ GPU)との相性がよく計算効率・スピードを高める効果が期待できるからこそこのようなテクニックを用いていますますので、それこそが重要であり、それ以上の数学的な意味・意義はそんなに考えなくてよいのかなというところでしょうか。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/

Read more

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部
CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

CEATEC 2025に出展します!フォトリアルAIアバター「MotionVox🄬」の最新版を実体験いただけます

株式会社Qualitegは、2025年10月14日(火)~17日(金)に幕張メッセで開催される「CEATEC 2025」に出展いたします。今回の出展では、当社が開発したフォトリアリスティックAIアバター技術「MotionVox🄬」をはじめ、最新のAI技術とビジネスイノベーションソリューションをご紹介いたします。 出展概要 * 会期:2025年10月14日(火)~10月17日(金) * 会場:幕張メッセ * 出展エリア:ネクストジェネレーションパーク * ブース番号:ホール6 6H207 * CEATEC内特設サイト:https://www.ceatec.com/nj/exhibitor_detail_ja?id=1915 見どころ:最先端AI技術を体感できる特別展示 1. フォトリアルAIアバター「MotionVox🄬」 テキスト入力だけで、まるで本物の人間のような動画を生成できる革新的なAIアバターシステムです。 MotionVox🄬は自社開発している「Expression Aware🄬」技術により日本人の演者データを基に開発された、

By Qualiteg ニュース
その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは! 本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。 ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。 エラーメッセージの詳細 [E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load

By Qualiteg プロダクト開発部