ディープラーニングモデルの安全な並列推論とパフォーマンス最適化

ディープラーニングモデルの安全な並列推論とパフォーマンス最適化
Photo by Amy Chen / Unsplash

こんにちは!

今日は、よく聞かれる質問の1つである「単一のモデルインスタンスで安全に並列推論を行えるか?」に関する内容です!

evalモードでの並列推論の安全性

PyTorchモデルがmodel.eval()を使用してevalモードに設定されている場合、一般的に並列推論に対して安全になります。

(ここでいう「並列」はマルチスレッドによる処理ととらえてください。バッチ推論については後述します。)

その理由は、

  1. パラメータの不変性
    evalモードでは、順伝播(forward pass)中にモデルのパラメータが更新されません。
  2. 学習特有レイヤーの非活性化
    BatchNormなどのレイヤーは、バッチ統計の計算ではなく、実行時統計(running statistics)を使用するモードに切り替わります。
  3. 入力データの独立性
    各スレッドやプロセスは独自の入力データで動作し、それぞれ別のメモリ領域に存在します。

以下は、evalモードでの安全な並列推論の基本的な例です:

import torch
import threading

def safe_inference(model, data):
    with torch.no_grad():
        return model(data)

model = YourModel()
model.eval()  # 重要: evalモードに設定

# 複数スレッドで推論を実行
threads = []
for i in range(10):
    t = threading.Thread(target=safe_inference, args=(model, your_data[i]))
    threads.append(t)
    t.start()

for t in threads:
    t.join()

注意が必要な場合

しかし、以下のような状況では注意が必要です:

  1. カスタムレイヤーの存在
    独自に実装したレイヤーがある場合、その並列実行時の挙動を慎重に確認する必要があります。
class CustomLayer(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.counter = 0  # 潜在的な問題源

    def forward(self, x):
        self.counter += 1  # スレッドセーフではない
        return x + self.counter

# このようなカスタムレイヤーは並列実行時に問題を引き起こす可能性があります
  1. GPUメモリの制約
    複数スレッドが同時に大量のデータを処理する場合、GPUメモリ不足が発生する可能性があります。
  2. 複雑なモデル構造
    特定のタイプのAttentionメカニズムなど、一部の複雑なモデル構造では、並列実行時に予期せぬ挙動を示す可能性があります。

プールの使用

上記のような注意が必要な場合、モデルインスタンスのプールを使用することで問題を回避できる場合があります。
以下は簡単なモデルプールの実装例です

import torch
from queue import Queue

class ModelPool:
    def __init__(self, model_class, num_instances):
        self.pool = Queue()
        for _ in range(num_instances):
            model = model_class().to('cuda')
            model.eval()
            self.pool.put(model)

    def get_model(self):
        return self.pool.get()

    def return_model(self, model):
        self.pool.put(model)

def safe_pooled_inference(pool, data):
    model = pool.get_model()
    try:
        with torch.no_grad():
            result = model(data)
        return result
    finally:
        pool.return_model(model)

# 使用例
pool = ModelPool(YourModel, num_instances=3)
results = [safe_pooled_inference(pool, data) for data in your_data_list]

このアプローチでは、各推論タスクが独立したモデルインスタンスを使用するため、並列実行時の問題を回避できます。

パフォーマンスの最適化の基本はバッチ

並列推論は柔軟性を提供しますが、オーバーヘッドによりパフォーマンスが低下する可能性があります。ここでは、パフォーマンスを向上させるための重要なヒントを紹介します。

バッチ処理の活用

個別の並列推論よりも、バッチ処理を活用することで大幅なパフォーマンス向上が見込めます。GPUは大量のデータを同時に処理するのに適しているため、バッチ処理はGPUの能力を最大限に活用できます。

1. 静的バッチ処理

最も単純な方法は、固定サイズのバッチを使用することです:

def batch_inference(model, data_list, batch_size=32):
    results = []
    for i in range(0, len(data_list), batch_size):
        batch = torch.stack(data_list[i:i+batch_size])
        with torch.no_grad():
            batch_results = model(batch)
        results.extend(batch_results)
    return results

# 使用例
results = batch_inference(model, your_data_list)

ただし、都合よくバッチのタイミングでアクセスは来ない

Webサービスなのでオンデマンドな推論サービスをつくってるときには、GPUの単純な並列推論だけでは対処しきれません。

なぜなら、都合よく、同じタイミングでユーザーがアクセスしてこないからです。
むしろうまくバッチにのせられるタイミングのほうがマレです。

2. ダイナミックバッチング

リアルタイムで到着するデータを効率的に処理するために、ダイナミックバッチングを使用できます

import time
from collections import deque

class DynamicBatcher:
    def __init__(self, model, max_batch_size=32, max_wait_time=0.1):
        self.model = model
        self.max_batch_size = max_batch_size
        self.max_wait_time = max_wait_time
        self.queue = deque()
        self.results = {}

    def add_item(self, item_id, data):
        self.queue.append((item_id, data))
        if len(self.queue) >= self.max_batch_size:
            self.process_batch()

    def process_batch(self):
        batch_ids, batch_data = zip(*[self.queue.popleft() for _ in range(len(self.queue))])
        batch_tensor = torch.stack(batch_data)
        with torch.no_grad():
            batch_results = self.model(batch_tensor)
        for item_id, result in zip(batch_ids, batch_results):
            self.results[item_id] = result

    def get_result(self, item_id):
        start_time = time.time()
        while item_id not in self.results:
            if time.time() - start_time > self.max_wait_time:
                self.process_batch()
            time.sleep(0.01)
        return self.results.pop(item_id)

# 使用例
batcher = DynamicBatcher(model)

def process_item(item_id, data):
    batcher.add_item(item_id, data)
    return batcher.get_result(item_id)

# 複数スレッドからprocess_itemを呼び出す

このアプローチでは、データが到着次第バッチに追加され、バッチサイズが最大に達するか、最大待機時間を超えた場合に処理が実行されます。

3. 連続バッチ処理

また、連続的にデータが生成される場合、以下のような連続バッチ処理が効果的です

import torch
from torch.utils.data import DataLoader, IterableDataset

class ContinuousDataset(IterableDataset):
    def __iter__(self):
        while True:
            yield self.get_next_item()  # データ生成ロジックを実装

    def get_next_item(self):
        # 実際のデータ生成ロジックをここに実装
        pass

def continuous_batch_inference(model, dataset, batch_size=32):
    dataloader = DataLoader(dataset, batch_size=batch_size)
    for batch in dataloader:
        with torch.no_grad():
            yield model(batch)

# 使用例
dataset = ContinuousDataset()
for batch_results in continuous_batch_inference(model, dataset):
    process_results(batch_results)  # 結果の処理

この方法では、データが連続的に生成される場合でも、効率的にバッチ処理を行うことができます。

まとめ

今回は、とくに1台のGPUにおける並列化とパフォーマンスについて解説しました。
evalモードでの並列推論は多くの場合安全ですが、パフォーマンスを最大化するためにはバッチ処理が必須ですね。またディープラーニング、LLM系のサービスの推論シーンは多くの場合でダイナミックバッチング、連続バッチ処理などの技術が重要となります。当社でも、ダイナミックバッチ、連続バッチを当初から研究しており、LLMや動画生成、AIキャラクター応答にも応用しています。
これらのテクニックを適切に選択し、実装することで、推論のスループットを大幅に向上させることができます。

並列化とは別観点ではありますが、モデルの量子化、TorchScript の使用、GPU 最適化など、追加の手法を組み合わせることで、さらなるパフォーマンス向上が期待できます。

GPUはとても高額な機器なので、1台のGPUを「使い切る」という視点は非常に重要で当社Qualitegでも日々技術を磨いています。

さらに大規模なアクセスには「GPUクラスター」の導入を考えましょう

一方、大量の同時アクセスが想定されるシーンでは複数台のGPUを使用した負荷分散が必須となります。そちらのテクニックについてもまた別途ブログにて投稿させていただこうとおもいますが、以下の動画に LLM におけるGPUクラスターの構成方法について解説していますので、こちらもよろしければご覧くださいませ。

それでは、また次回お会いしましょう!

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部