ディープラーニングモデルの安全な並列推論とパフォーマンス最適化

ディープラーニングモデルの安全な並列推論とパフォーマンス最適化
Photo by Amy Chen / Unsplash

こんにちは!

今日は、よく聞かれる質問の1つである「単一のモデルインスタンスで安全に並列推論を行えるか?」に関する内容です!

evalモードでの並列推論の安全性

PyTorchモデルがmodel.eval()を使用してevalモードに設定されている場合、一般的に並列推論に対して安全になります。

(ここでいう「並列」はマルチスレッドによる処理ととらえてください。バッチ推論については後述します。)

その理由は、

  1. パラメータの不変性
    evalモードでは、順伝播(forward pass)中にモデルのパラメータが更新されません。
  2. 学習特有レイヤーの非活性化
    BatchNormなどのレイヤーは、バッチ統計の計算ではなく、実行時統計(running statistics)を使用するモードに切り替わります。
  3. 入力データの独立性
    各スレッドやプロセスは独自の入力データで動作し、それぞれ別のメモリ領域に存在します。

以下は、evalモードでの安全な並列推論の基本的な例です:

import torch
import threading

def safe_inference(model, data):
    with torch.no_grad():
        return model(data)

model = YourModel()
model.eval()  # 重要: evalモードに設定

# 複数スレッドで推論を実行
threads = []
for i in range(10):
    t = threading.Thread(target=safe_inference, args=(model, your_data[i]))
    threads.append(t)
    t.start()

for t in threads:
    t.join()

注意が必要な場合

しかし、以下のような状況では注意が必要です:

  1. カスタムレイヤーの存在
    独自に実装したレイヤーがある場合、その並列実行時の挙動を慎重に確認する必要があります。
class CustomLayer(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.counter = 0  # 潜在的な問題源

    def forward(self, x):
        self.counter += 1  # スレッドセーフではない
        return x + self.counter

# このようなカスタムレイヤーは並列実行時に問題を引き起こす可能性があります
  1. GPUメモリの制約
    複数スレッドが同時に大量のデータを処理する場合、GPUメモリ不足が発生する可能性があります。
  2. 複雑なモデル構造
    特定のタイプのAttentionメカニズムなど、一部の複雑なモデル構造では、並列実行時に予期せぬ挙動を示す可能性があります。

プールの使用

上記のような注意が必要な場合、モデルインスタンスのプールを使用することで問題を回避できる場合があります。
以下は簡単なモデルプールの実装例です

import torch
from queue import Queue

class ModelPool:
    def __init__(self, model_class, num_instances):
        self.pool = Queue()
        for _ in range(num_instances):
            model = model_class().to('cuda')
            model.eval()
            self.pool.put(model)

    def get_model(self):
        return self.pool.get()

    def return_model(self, model):
        self.pool.put(model)

def safe_pooled_inference(pool, data):
    model = pool.get_model()
    try:
        with torch.no_grad():
            result = model(data)
        return result
    finally:
        pool.return_model(model)

# 使用例
pool = ModelPool(YourModel, num_instances=3)
results = [safe_pooled_inference(pool, data) for data in your_data_list]

このアプローチでは、各推論タスクが独立したモデルインスタンスを使用するため、並列実行時の問題を回避できます。

パフォーマンスの最適化の基本はバッチ

並列推論は柔軟性を提供しますが、オーバーヘッドによりパフォーマンスが低下する可能性があります。ここでは、パフォーマンスを向上させるための重要なヒントを紹介します。

バッチ処理の活用

個別の並列推論よりも、バッチ処理を活用することで大幅なパフォーマンス向上が見込めます。GPUは大量のデータを同時に処理するのに適しているため、バッチ処理はGPUの能力を最大限に活用できます。

1. 静的バッチ処理

最も単純な方法は、固定サイズのバッチを使用することです:

def batch_inference(model, data_list, batch_size=32):
    results = []
    for i in range(0, len(data_list), batch_size):
        batch = torch.stack(data_list[i:i+batch_size])
        with torch.no_grad():
            batch_results = model(batch)
        results.extend(batch_results)
    return results

# 使用例
results = batch_inference(model, your_data_list)

ただし、都合よくバッチのタイミングでアクセスは来ない

Webサービスなのでオンデマンドな推論サービスをつくってるときには、GPUの単純な並列推論だけでは対処しきれません。

なぜなら、都合よく、同じタイミングでユーザーがアクセスしてこないからです。
むしろうまくバッチにのせられるタイミングのほうがマレです。

2. ダイナミックバッチング

リアルタイムで到着するデータを効率的に処理するために、ダイナミックバッチングを使用できます

import time
from collections import deque

class DynamicBatcher:
    def __init__(self, model, max_batch_size=32, max_wait_time=0.1):
        self.model = model
        self.max_batch_size = max_batch_size
        self.max_wait_time = max_wait_time
        self.queue = deque()
        self.results = {}

    def add_item(self, item_id, data):
        self.queue.append((item_id, data))
        if len(self.queue) >= self.max_batch_size:
            self.process_batch()

    def process_batch(self):
        batch_ids, batch_data = zip(*[self.queue.popleft() for _ in range(len(self.queue))])
        batch_tensor = torch.stack(batch_data)
        with torch.no_grad():
            batch_results = self.model(batch_tensor)
        for item_id, result in zip(batch_ids, batch_results):
            self.results[item_id] = result

    def get_result(self, item_id):
        start_time = time.time()
        while item_id not in self.results:
            if time.time() - start_time > self.max_wait_time:
                self.process_batch()
            time.sleep(0.01)
        return self.results.pop(item_id)

# 使用例
batcher = DynamicBatcher(model)

def process_item(item_id, data):
    batcher.add_item(item_id, data)
    return batcher.get_result(item_id)

# 複数スレッドからprocess_itemを呼び出す

このアプローチでは、データが到着次第バッチに追加され、バッチサイズが最大に達するか、最大待機時間を超えた場合に処理が実行されます。

3. 連続バッチ処理

また、連続的にデータが生成される場合、以下のような連続バッチ処理が効果的です

import torch
from torch.utils.data import DataLoader, IterableDataset

class ContinuousDataset(IterableDataset):
    def __iter__(self):
        while True:
            yield self.get_next_item()  # データ生成ロジックを実装

    def get_next_item(self):
        # 実際のデータ生成ロジックをここに実装
        pass

def continuous_batch_inference(model, dataset, batch_size=32):
    dataloader = DataLoader(dataset, batch_size=batch_size)
    for batch in dataloader:
        with torch.no_grad():
            yield model(batch)

# 使用例
dataset = ContinuousDataset()
for batch_results in continuous_batch_inference(model, dataset):
    process_results(batch_results)  # 結果の処理

この方法では、データが連続的に生成される場合でも、効率的にバッチ処理を行うことができます。

まとめ

今回は、とくに1台のGPUにおける並列化とパフォーマンスについて解説しました。
evalモードでの並列推論は多くの場合安全ですが、パフォーマンスを最大化するためにはバッチ処理が必須ですね。またディープラーニング、LLM系のサービスの推論シーンは多くの場合でダイナミックバッチング、連続バッチ処理などの技術が重要となります。当社でも、ダイナミックバッチ、連続バッチを当初から研究しており、LLMや動画生成、AIキャラクター応答にも応用しています。
これらのテクニックを適切に選択し、実装することで、推論のスループットを大幅に向上させることができます。

並列化とは別観点ではありますが、モデルの量子化、TorchScript の使用、GPU 最適化など、追加の手法を組み合わせることで、さらなるパフォーマンス向上が期待できます。

GPUはとても高額な機器なので、1台のGPUを「使い切る」という視点は非常に重要で当社Qualitegでも日々技術を磨いています。

さらに大規模なアクセスには「GPUクラスター」の導入を考えましょう

一方、大量の同時アクセスが想定されるシーンでは複数台のGPUを使用した負荷分散が必須となります。そちらのテクニックについてもまた別途ブログにて投稿させていただこうとおもいますが、以下の動画に LLM におけるGPUクラスターの構成方法について解説していますので、こちらもよろしければご覧くださいませ。

それでは、また次回お会いしましょう!

Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部