GPUリッチと日本の現状

GPUリッチと日本の現状
NVIDIA H100

世界的なGPU不足が深刻化しており、特に高性能なグラフィックスプロセッシングユニット(GPU)の確保が困難な状況に直面しています。この不足は、AI研究開発をはじめとする多くのテクノロジー業界に大きな影響を及ぼしており、企業や研究機関の間で新たな競争が生まれています。

GPU不足の現状

「GPUが非常に不足しているため、当社の製品を使用する人が少ないほど良いです」「GPUが不足しているため、当社の製品の使用量が減ってくれると嬉しいです」との声が業界内で聞かれるほど、GPUの調達は困難を極めています。

イーロン・マスクは、GPUの入手困難さを「麻薬よりも取得が難しい」と形容しています。

米国のビッグテックやメガベンチャーでは、GPUを万単位で確保しており、一例として1万台のGPUを確保するには約600億円の投資が必要とされています。これらの企業は、「GPUリッチ」と呼ばれるほどに、NVIDIAのA100やH100などの高性能GPUを大量に所有しています。

man in black framed sunglasses holding fan of white and gray striped cards

GPUリッチの影響

このGPUリッチな環境は、米国内でのAI研究開発競争を加速させています。ベイエリアのトップAI研究者たちは、GPUへのアクセスを自慢し、それが彼らの職場選びに大きな影響を与え始めています。Metaなどの企業は、採用戦術としてGPUリソースを活用しており、豊富な資金力により高性能のGPUを大量に確保し、競争に勝ちに行く戦略を取っています。

日本の状況

一方、日本では、国策とも言える産業技術総合研究所(産総研)のABCI(AI Bridging Cloud Infrastructure)でさえ、新モデルのH100は保有している気配は無く、旧式のGPUしか保有できていない状態です。このような状況は、日本が国際競争において不利な立場に立たされていることを示しており、どう頑張っても、小粒な日本語LLMしか作れない可能性があります。

(そもそも、日本語の言語リソースが英語のそれよりもずっと少ないという課題もあります)

日本の戦い方

日本がこのGPUリッチな環境においてどのように競争していくべきかは、重要な課題となっています。私たちは日本の企業や研究機関は、限られたリソースの中で、高度に最適化されたアルゴリズム、効率的なデータ処理、そして創造的な問題解決戦略を発見していくことと信じています。また当社のようなLLMプラットフォーム企業をハブとして活用していただくことで、相互のパートナーシップが生まれ、新しい技術の開発において力を結集することができるのではないでしょうか。そのためのネットワーキングの支援、事例共有なども積極的に行っていきたいとおもいます。つまり、米国が力で戦っているのにたいして、日本は技と技の結集で戦うというわけです。

LLMスタートアップには依然厳しい

その「技」を担う重要なプレイヤーとして、LLMを研究しているベンチャー・スタートアップという存在を忘れてはいけないでしょう。

彼らはさらに深刻で、GPU Poor ともいえるべき状況ではないでしょうか。たとえば、NVIDIA A100(80GB)は1台300万円、H100(80GB)は600万円以上します。 大学発スタートアップなどがエクイティ調達しようとすると例えばシード期 Post Valuation で数億円。実際の調達額はせいぜい数千万円となり、いまの日本のスタートアップエコシステムでの調達額では、高性能GPUを数枚買ったら枯渇してしまいます。

a close up of a sign in the dark

この業界は、とにかく GPUありきなので、従来のAASのように小さく生んで大きく育てられるビジネスモデルとコスト構造が決定的に違いますが、なかなかそれを説明して正しく理解していただくのは難しいという話を聞きます。また、仮に数億円調達できても、数億円程度ではとても”大規模な”LLMをトレーニングすることはできません。GPUクラウド環境も割高で、そもそも、学習をまわしてもうまくいく保証はないので何百万円かけてトレーニングしても成果無しということもよく起こり、なかなか厳しい状況です。このままでは運よくスポンサーをみつけたスタートアップや大企業にM&Aされたスタートアップ以外は打席に立つ前に淘汰されてしまうとおもいます。それが競争といえば競争かもしれませんが、せめて打席に立つ(GPU資源は気軽に使える)チャンスが必要でしょう。AWS による支援プログラムなど太っ腹な救済策?もはじまっていますが、より多くの挑戦者が打席に立つためには、豊富なGPU資源に”気軽に”アクセスできる環境が必要であり、「GPU使用無償化」の国策に期待したいところであります。これはまったく他人事ではなく、私たちもトレーニングほどの資源は使用しないものの、推論環境に必要な GPU資源 の確保に苦慮しており、心を同じくしております。

All you all need is GPU! (^_-)


Read more

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング