GPUリッチと日本の現状

GPUリッチと日本の現状
NVIDIA H100

世界的なGPU不足が深刻化しており、特に高性能なグラフィックスプロセッシングユニット(GPU)の確保が困難な状況に直面しています。この不足は、AI研究開発をはじめとする多くのテクノロジー業界に大きな影響を及ぼしており、企業や研究機関の間で新たな競争が生まれています。

GPU不足の現状

「GPUが非常に不足しているため、当社の製品を使用する人が少ないほど良いです」「GPUが不足しているため、当社の製品の使用量が減ってくれると嬉しいです」との声が業界内で聞かれるほど、GPUの調達は困難を極めています。

イーロン・マスクは、GPUの入手困難さを「麻薬よりも取得が難しい」と形容しています。

米国のビッグテックやメガベンチャーでは、GPUを万単位で確保しており、一例として1万台のGPUを確保するには約600億円の投資が必要とされています。これらの企業は、「GPUリッチ」と呼ばれるほどに、NVIDIAのA100やH100などの高性能GPUを大量に所有しています。

man in black framed sunglasses holding fan of white and gray striped cards

GPUリッチの影響

このGPUリッチな環境は、米国内でのAI研究開発競争を加速させています。ベイエリアのトップAI研究者たちは、GPUへのアクセスを自慢し、それが彼らの職場選びに大きな影響を与え始めています。Metaなどの企業は、採用戦術としてGPUリソースを活用しており、豊富な資金力により高性能のGPUを大量に確保し、競争に勝ちに行く戦略を取っています。

日本の状況

一方、日本では、国策とも言える産業技術総合研究所(産総研)のABCI(AI Bridging Cloud Infrastructure)でさえ、新モデルのH100は保有している気配は無く、旧式のGPUしか保有できていない状態です。このような状況は、日本が国際競争において不利な立場に立たされていることを示しており、どう頑張っても、小粒な日本語LLMしか作れない可能性があります。

(そもそも、日本語の言語リソースが英語のそれよりもずっと少ないという課題もあります)

日本の戦い方

日本がこのGPUリッチな環境においてどのように競争していくべきかは、重要な課題となっています。私たちは日本の企業や研究機関は、限られたリソースの中で、高度に最適化されたアルゴリズム、効率的なデータ処理、そして創造的な問題解決戦略を発見していくことと信じています。また当社のようなLLMプラットフォーム企業をハブとして活用していただくことで、相互のパートナーシップが生まれ、新しい技術の開発において力を結集することができるのではないでしょうか。そのためのネットワーキングの支援、事例共有なども積極的に行っていきたいとおもいます。つまり、米国が力で戦っているのにたいして、日本は技と技の結集で戦うというわけです。

LLMスタートアップには依然厳しい

その「技」を担う重要なプレイヤーとして、LLMを研究しているベンチャー・スタートアップという存在を忘れてはいけないでしょう。

彼らはさらに深刻で、GPU Poor ともいえるべき状況ではないでしょうか。たとえば、NVIDIA A100(80GB)は1台300万円、H100(80GB)は600万円以上します。 大学発スタートアップなどがエクイティ調達しようとすると例えばシード期 Post Valuation で数億円。実際の調達額はせいぜい数千万円となり、いまの日本のスタートアップエコシステムでの調達額では、高性能GPUを数枚買ったら枯渇してしまいます。

a close up of a sign in the dark

この業界は、とにかく GPUありきなので、従来のAASのように小さく生んで大きく育てられるビジネスモデルとコスト構造が決定的に違いますが、なかなかそれを説明して正しく理解していただくのは難しいという話を聞きます。また、仮に数億円調達できても、数億円程度ではとても”大規模な”LLMをトレーニングすることはできません。GPUクラウド環境も割高で、そもそも、学習をまわしてもうまくいく保証はないので何百万円かけてトレーニングしても成果無しということもよく起こり、なかなか厳しい状況です。このままでは運よくスポンサーをみつけたスタートアップや大企業にM&Aされたスタートアップ以外は打席に立つ前に淘汰されてしまうとおもいます。それが競争といえば競争かもしれませんが、せめて打席に立つ(GPU資源は気軽に使える)チャンスが必要でしょう。AWS による支援プログラムなど太っ腹な救済策?もはじまっていますが、より多くの挑戦者が打席に立つためには、豊富なGPU資源に”気軽に”アクセスできる環境が必要であり、「GPU使用無償化」の国策に期待したいところであります。これはまったく他人事ではなく、私たちもトレーニングほどの資源は使用しないものの、推論環境に必要な GPU資源 の確保に苦慮しており、心を同じくしております。

All you all need is GPU! (^_-)


Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation