GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

こんにちは!

当社では、AIを使用した動画変換や動画生成サービスを展開しておりますが、このようなサービスは推論過程(つまり、動画生成をするときの計算処理)でもGPUに高負荷の計算を行わせる必要があります。

その為、GPUが動画を生成している過程ではユーザーは生成結果を待つことになります。特に画像や動画生成には膨大な計算処理が発生するため、待ち時間も長くなり、従来のSAASのように一瞬で応答という体験は難しく、長ければ数十秒~数分、数十分と待ち時間が発生する場合があります。

このようなサーバーシステムを設計する際、「1つのサーバーで、いや、1つのGPUで何人のユーザーをサポートできるのか?」という問いは常に重要です。

特に、同時に1件しか処理できない変換サーバーなど、制約のあるシステムでは正確な容量計算が不可欠です。

本記事では、キューイング理論に基づいてこのような変換サーバーの最適ユーザー数を計算する方法を解説いたします。また、実用的な計算ツールもご紹介します。

問題設定

では、シンプルな問題設定をしてみましょう

  • 同時に1件の変換しか処理できないサーバーがある
  • 1件の変換に平均5分かかる
  • ユーザーは不規則にサービスにアクセスする
  • ピーク時間にはアクセスが集中する

この状況で、快適なサービスを提供するには1台のサーバーで何人のユーザーまでサポートすべきでしょうか?

キューイング理論の基礎

この問題はキューイング理論(待ち行列理論)で解くことができます。

キューイング理論は、限られたリソースに対する需要が重なった場合の待ち行列の振る舞いを数学的に分析する理論です。

サーバーが1台で、到着がポアソン分布、サービス時間が指数分布に従うと仮定すると、これはM/M/1モデルと呼ばれるシステムになります。

計算モデルの導出

まず、基本的なパラメータを定義しましょう

  • t_p: 処理時間(分/件)
    変換サーバーが1件の処理リクエストを完了するのにかかる平均時間です。例えば、ファイル変換ならファイルの読み込み、処理、出力までの全工程を含みます。この値が小さいほど、サーバーの処理能力は高くなります。例:5分/件
  • μ (mu): サービス率(件/時間)= 60分 ÷ t_p
    1時間あたりに処理できる最大リクエスト数を表します。1時間(60分)を1件あたりの処理時間(t_p)で割ることで算出されます。例えば処理時間が5分なら、μ = 60分 ÷ 5分 = 12件/時間となります。これはサーバーの理論上の最大処理能力です。
  • ρ (rho): 目標システム利用率
    サーバーの稼働率の目標値で、0〜1の値をとります。キューイング理論によれば、安定した運用のためには0.7〜0.8程度に設定することが推奨されます。ρが1に近づくと待ち行列が急速に増加し、ユーザー体験が悪化します。例:0.8(80%の稼働率)
  • P_c: ピーク係数
    平均的なアクセス時間帯と比較して、最も混雑する時間帯のアクセス数の比率です。例えば、P_c = 2.5は、ピーク時のアクセス量が平均の2.5倍になることを意味します。この値は過去のアクセスログから算出するか、類似システムの実績から見積もります。
  • H: 稼働時間(時間/日)
    システムが1日に稼働している時間の合計です。24時間365日稼働のシステムなら24時間、業務時間内のみ利用可能なシステムなら、例えば8-20時の12時間などとなります。
  • P_a: アクセス確率(1日あたりの利用確率)
    登録ユーザー1人が1日のうちにシステムを利用する確率です。例えば、P_a = 0.3は、各ユーザーが30%の確率で1日にシステムを利用することを意味します。全ユーザーが毎日利用するシステムならP_a = 1となります。
  • F: 1ユーザーあたりの1日の変換回数
    ユーザーがシステムを利用する日に、平均して実行する変換処理の回数です。例えば、F = 2は、システムを利用する日には平均して2回の変換処理を行うことを意味します。ユーザーの利用パターンによって変わる値です。

キューイング理論によれば、システムが安定するためには利用率ρが1未満である必要があります。実際には、待ち時間を合理的な範囲に抑えるために、ρ = 0.7〜0.8程度に設定することが推奨されます。

計算手順

1台のサーバーでサポート可能な総ユーザー数

N = R ÷ r_u

1ユーザーあたりの1日の平均リクエスト数

r_u = P_a × F

1日の総処理可能リクエスト数

R = λ_a × H

ピーク時も安定稼働させるための平均到着率

λ_a = λ_s ÷ P_c

安定稼働時の平均到着率

λ_s = ρ × μ

サービス率の計算

μ = 60 ÷ t_p

これらをまとめると、最終計算式は以下になりますね!

N = (ρ × μ × H) ÷ (P_a × F × P_c)

この式に基づいて、サーバー1台でサポートできる最適ユーザー数を計算できます。

さて、自分で計算するのも面倒なので、ツールをご準備いたしました♪

最適ユーザー数計算ツール

以下のツールを使って、サーバーの最適ユーザー数を簡単に計算できます。各パラメータを調整すると、サポート可能なユーザー数がリアルタイムで更新されます。

GPUサーバーにぶるさがるユーザー数計算ツール

最大ユーザーサポート数計算ツール

同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します

分/件
1件の変換処理にかかる時間
0 〜 1
安定稼働のための目標稼働率(推奨: 0.7〜0.8)
最も混雑する時間帯の平均アクセス倍率
時間/日
システムが1日に稼働している総時間
0 〜 1
1人のユーザーが1日にシステムを利用する確率
回/日
利用する日の平均変換処理回数

実際の運用上の考慮事項

上記ツールは理解促進のためシンプルな条件設定と計算モデルを使用しておりますが、実際のシステム運用では以下のような追加要素も考慮する必要があります

1. ピーク時間の分析

実際のアクセスパターンを収集・分析することで、より正確なピーク係数を把握できます。例えば、システムログを分析して時間帯別のアクセス分布を作成し、平均値との比率を求めることでピーク係数を算出できます。

2. 処理時間のばらつき

実際の処理時間は一定ではなく、変動します。変換内容によって処理時間が大きく異なる場合は、平均処理時間だけでなく、最大処理時間や処理時間の分散も考慮することが重要です。

3. アクセス確率の見直し

ユーザーのアクセス頻度は時間帯や曜日、季節、サービスのバズり度合いによっても変化します。長期的なデータ収集を通じて、より正確なアクセス確率を見積もることで、計算精度を向上させることができます。

4. ユーザー体験の考慮

サーバー容量を計算する際、技術的な限界だけでなく、ユーザー体験も重要です。例えば、待ち時間が長くなりすぎないよう、余裕を持った設計が必要です。目標システム利用率を0.7程度に設定するのはこのためです。

パラメータの自動最適化:機械学習の活用

上記の考慮事項をベースに、実際のサービス運用データを活用して継続的に最適化していくことが理想的です。

さてさて、最適化といえば、当社も得意な機械学習の出番です。

データ収集とモニタリング

最適な容量計算のために、以下のようなデータを継続的に収集します

  • アクセスログ: 時間帯別、曜日別、季節別のアクセスパターン
  • 処理時間ログ: 各変換処理の実行時間と処理内容の関係
  • 待ち時間データ: ユーザーがキューに入ってから処理開始までの待機時間
  • ユーザー行動データ: キャンセル率、リトライ率、利用頻度など

機械学習によるパラメータ最適化

収集したデータを基に、以下のパラメータを機械学習モデルで自動的に更新・最適化できます

  1. ピーク係数の動的予測
    • 時系列分析(ARIMA, Prophet)を用いて、曜日や季節に応じた将来のピーク係数を予測します
      ・ARIMAは、Auto-Regressive Integrated Moving Average(自己回帰和分移動平均)の略で、時系列データの予測に広く使われる統計モデルです。
      ・Prophetは、Facebookが開発した時系列予測ツールで、大規模なデータに対しても効率的に予測を行えます。
    • 特別なイベントやプロモーション時、意図しないバズりなど異常値(スパイク)検出と自動調整
  2. 処理時間の予測モデル
    • 変換内容の特徴(動画種類、ファイルサイズなど)から処理時間を予測する回帰モデル
    • ユーザー別、コンテンツ別などの軸での処理時間傾向の学習
  3. アクセス確率の個別化
    • ユーザーのセグメンテーションによる細分化されたアクセス確率モデル
    • ユーザーの行動履歴に基づいた予測モデルの構築
  4. 最適システム利用率の自動調整
    • ユーザー満足度と処理効率のバランスを最適化するための強化学習
    • ユーザーのフィードバックデータを活用した利用率の調整

実装アプローチ

あとは機械学習ベースの最適化システムの実装とおなじです。データパイプラインをつくって、各種ログデータを効率的に集約していきます。
ログデータから週次でトレーニングにいれて、上記変数を予測します。予測された変数をもとに1台のGPUサーバーでさばけるユーザー数をより精度高く見積もり、サーバの増強戦略を検討します。ユーザー増加に追いつくようにサーバーを増強していくイメージですね。

こうした変数は実際にサービスを運用していかないとわからないので、本ブログのように最初は経験値をもとに設定しています。

まとめ

変換サーバーの容量計算は、単純に「1時間に何件処理できるか」という計算だけでは不十分で、ユーザーの行動パターン、ピーク時の集中度、システムの安定性などを総合的に考慮する必要があります。

本記事でご紹介した計算モデルは、キューイング理論に基づく1つの実践的なアプローチですが、あり、多くの長時間処理GPUサーバーシステムの容量計画に応用できるとおもいますが、あくまで理論的な見積もりであるため実際のシステム容量を決定する際は、実測データに基づく調整や、パフォーマンステストを併用するのが良いようにおもいます。

Read more

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部
Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

こんにちは! きょうは話題のMCPについて解説いたします! はじめに 「AIが便利なのはわかるけど、自分のデータにアクセスさせたり、他のアプリと連携させたりするのは難しそう...」 このような悩みを持っている方は多いのではないでしょうか。 実際、従来のAIには大きな壁がありました。トレーニングデータの範囲でしか回答できない、リアルタイム情報にアクセスできない、外部アプリケーションを操作できないなどの制約です。 トレーニングデータの外側にあるデータをうまく検索する技術としてLLM黎明期からRAGとよばれる技術が発展してきました。 データ検索だけではなく、あらゆる分野でAIが半ば自動で連携してくれる技術が登場しました。 それが「Model Context Protocol(MCP)」です。 本記事では、AIと外部ツールの連携を革新的に簡単にするMCPについて、基本から実用まで詳しく解説します。 MCPの本質:AIのための標準インターフェース MCPは、AIモデルと外部ツール・アプリケーションの間の通信を標準化するプロトコルです。これはインターネットの世界でいえば、

By Qualiteg プロダクト開発部