FP8やFP4のネイティブサポートと vLLM をつかった "fp8" 量子化

FP8やFP4のネイティブサポートと vLLM をつかった "fp8" 量子化

こんにちは、(株)Qualiteg プロダクト開発部です

最新モデルがリリースされたとき、推論速度を速くするために、いろいろな手法で量子化したり、複数の推論エンジンを使い分けたりしながら、正解をさがしにいくことが多いのですが、今回はそんな中で以下のような事象が発生いたしました。

当社もありとあらゆるGPUを取り揃えているわけではないので、あー、そういうことかぁ、と思ったので、本ブログにいたしました。

発生したエラー

vLLM 0.5.1 であるLLMをロードしようとしたときに発生したときに、以下のようなエラーが発生しました

ValueError: The quantization method fp8 is not supported for the current GPU. Minimum capability: 89. Current capability: 86 

原因は FP8 に対応していないGPU世代

GPUは NVIDIA RTX-A6000 で、以下のように OpenAI 互換サーバーで "fp8" 量子化を指定して起動しようとすると発生します。

python3 -m vllm.entrypoints.openai.api_server --model cyberagent/calm3-22b-chat --max-num-seqs 12 --quantization fp8 --chat-template="~/jinja/calm3_22b_chat.jinja"

原因は、RTX A6000 が FP8 を ネイティブでサポートしていない ため、でした。

つまり、この vLLM の FP8 量子化オプションはハードウェアが FP8演算に対応していたときのみ機能します。

(ちなみに、対応していないときは fp8_merlin という逃げ道もありますが、話がややこしくなるので別稿にて扱いたいと思います)

つまり、今回使用した GPU A6000 の capability levelは 86 (capability一覧)なので、FP8 量子化には対応していなかった、というオチとなります。

FP8 演算精度にネイティブに対応しているGPUたち

FP8(8ビット浮動小数点演算)は Hopper から加わった演算精度ですので、以下のようなGPUから使用することが可能です。

FP4 演算精度にネイティブに対応すると

さらに Capability 100 の Blackwell からは FP4 のネイティブサポートがありますので、おそらく vLLM も ネイティブ FP4 をサポートしてくるのではないでしょうか。

そうなると、そうした最新GPUの場合AWQやGPTQといった従来の専用のハードウェアアクセラレーションを前提としない「古典的」量子化手法とはまた別の「ネイティブ」量子化がでてくるため、どのくらいの差なのか、非常に興味深いところですね!

Read more

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

こんにちは! きょうは話題のMCPについて解説いたします! はじめに 「AIが便利なのはわかるけど、自分のデータにアクセスさせたり、他のアプリと連携させたりするのは難しそう...」 このような悩みを持っている方は多いのではないでしょうか。 実際、従来のAIには大きな壁がありました。トレーニングデータの範囲でしか回答できない、リアルタイム情報にアクセスできない、外部アプリケーションを操作できないなどの制約です。 トレーニングデータの外側にあるデータをうまく検索する技術としてLLM黎明期からRAGとよばれる技術が発展してきました。 データ検索だけではなく、あらゆる分野でAIが半ば自動で連携してくれる技術が登場しました。 それが「Model Context Protocol(MCP)」です。 本記事では、AIと外部ツールの連携を革新的に簡単にするMCPについて、基本から実用まで詳しく解説します。 MCPの本質:AIのための標準インターフェース MCPは、AIモデルと外部ツール・アプリケーションの間の通信を標準化するプロトコルです。これはインターネットの世界でいえば、

By Qualiteg プロダクト開発部
GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation