FP8やFP4のネイティブサポートと vLLM をつかった "fp8" 量子化

FP8やFP4のネイティブサポートと vLLM をつかった "fp8" 量子化

こんにちは、(株)Qualiteg プロダクト開発部です

最新モデルがリリースされたとき、推論速度を速くするために、いろいろな手法で量子化したり、複数の推論エンジンを使い分けたりしながら、正解をさがしにいくことが多いのですが、今回はそんな中で以下のような事象が発生いたしました。

当社もありとあらゆるGPUを取り揃えているわけではないので、あー、そういうことかぁ、と思ったので、本ブログにいたしました。

発生したエラー

vLLM 0.5.1 であるLLMをロードしようとしたときに発生したときに、以下のようなエラーが発生しました

ValueError: The quantization method fp8 is not supported for the current GPU. Minimum capability: 89. Current capability: 86 

原因は FP8 に対応していないGPU世代

GPUは NVIDIA RTX-A6000 で、以下のように OpenAI 互換サーバーで "fp8" 量子化を指定して起動しようとすると発生します。

python3 -m vllm.entrypoints.openai.api_server --model cyberagent/calm3-22b-chat --max-num-seqs 12 --quantization fp8 --chat-template="~/jinja/calm3_22b_chat.jinja"

原因は、RTX A6000 が FP8 を ネイティブでサポートしていない ため、でした。

つまり、この vLLM の FP8 量子化オプションはハードウェアが FP8演算に対応していたときのみ機能します。

(ちなみに、対応していないときは fp8_merlin という逃げ道もありますが、話がややこしくなるので別稿にて扱いたいと思います)

つまり、今回使用した GPU A6000 の capability levelは 86 (capability一覧)なので、FP8 量子化には対応していなかった、というオチとなります。

FP8 演算精度にネイティブに対応しているGPUたち

FP8(8ビット浮動小数点演算)は Hopper から加わった演算精度ですので、以下のようなGPUから使用することが可能です。

FP4 演算精度にネイティブに対応すると

さらに Capability 100 の Blackwell からは FP4 のネイティブサポートがありますので、おそらく vLLM も ネイティブ FP4 をサポートしてくるのではないでしょうか。

そうなると、そうした最新GPUの場合AWQやGPTQといった従来の専用のハードウェアアクセラレーションを前提としない「古典的」量子化手法とはまた別の「ネイティブ」量子化がでてくるため、どのくらいの差なのか、非常に興味深いところですね!

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation