本番運用におけるPyTorch+CUDAサーバーでの「Unknown Error」問題とその対策

本番運用におけるPyTorch+CUDAサーバーでの「Unknown Error」問題とその対策

こんにちは!Qualitegプロダクト開発部です。

今日は、GPUをつかった商用サービスにて悩ましい、テストは全部通るけど、長時間運用をしていると急に起こる「CUDA error: unknown error」についての内容です。

これ、出会うと残念な気持ちになりますが、けっこうGPU商用サービス界隈では「あるある」なんです。

原因を真面目に探るには CUDAバージョン、PyTorchバージョンの調合具合、実際のアプリケーションコードまですべてソースまで追う必要があるのですが、多くの場合、運用でカバーします。

なぜなら仮に1つ原因をみつけて対処できたとしても、CUDAバージョンはしょっちゅうあがりますし、PyTorchもそれに追従して頻繁に更新されます。さらにやっかいなことに、1日、2日、いや1週間くらいは安定的に動作しているようにみえて、数週間後にとつぜんエラーが出るといった具合なので、修正確認の難易度が高いんです。

そこで本日は「開発環境や実験環境」ではなく「本番環境」で発生しがちなこのCUDA Unknown Error について問題の原因と実践的な対策について解説します。

問題の具体例

典型的なエラーは次のようなスタックトレースとして現れます:

RuntimeError: CUDA error: unknown error
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

特に多く見られるのは、NumPy配列からPyTorchテンソルへの変換時に発生するエラーです:

img = torch.from_numpy(img.copy()).to(device, dtype=torch.float32)

なぜこの問題が発生するのか

この問題が発生する主な理由は以下のようなものがかんがえられます

1. CUDA・PyTorchのバージョン互換性の問題

CUDAとPyTorchのバージョンをアップグレードした後に、このようなエラーが突然発生するケースが多く見られます。

特にマイナーアップデートでさえ、内部実装の変更によって未知の互換性問題が引き起こされることがあります。例えば、CUDA 12.4から12.8へのアップグレード後、それに追従したPyTorchのアップグレード、また、そのために Pythonのバージョンをアップグレードしたときに付随して問題が発生することがよくあります。

2. GPUメモリの管理とリーク

PyTorchはGPUメモリを効率的に使用するためにキャッシュ機構を採用していますが、このキャッシュは完璧ではありません。

長時間の実行中に、小さなメモリリークが蓄積したり、メモリの断片化が進行したりします。

さらに、PyTorchのメモリ管理はアプリケーション層から詳細に制御することができません。
ざっくりとした解放命令やGC要求はできますが、それ以上の細かい制御はできずメモリの解放、予約領域の解放など簡単にはアプリ層からは触れず、あるいいみPyTorchまかせです。

2. CUDA非同期処理の特性

CUDAの多くの操作は非同期で行われるため、エラーが実際に発生した場所と報告される場所が異なることがあります。

エラーメッセージにも記載されている通り、実際のエラーは別のAPIコールでしれっと非同期的に報告されることがあります。

これによりデバッグがさらに困難になります。

3. 長時間実行の影響

商用サーバーアプリケーションは通常、数日から数週間(あるいはそれ以上)にわたって実行され続けます。

この間、小さな問題が徐々に蓄積し、最終的にはクリティカルなエラーとなって現れることがあります。

4. モデルの複雑性と負荷

当社サービスでも頻繁に実行される顔検出や画像認識などの複雑なモデルでは、大量のGPUリソースが必要とされ、長時間の高負荷状態がこの問題を引き起こす可能性が高まります。

実用的な対策

この問題に対処するための実践的なアプローチをいくつか紹介します

0.バージョンアップグレード前の長時間テスト

CUDAやPyTorchのバージョンをアップグレードする前に、必ず本番環境と同じ条件で長時間のテストを実施することが重要です。

特に注意すべき点は以下の通りです

  • 実際の負荷条件での検証 実際の運用時と同様の負荷をかけたテストを行います
  • 最低24時間の継続実行 メモリリークなどは時間経過とともに発生するため、短時間のテストでは発見できません
  • 繰り返しの処理 同じ処理を数千回繰り返すことで、安定性を確認します
# 最低でも24時間は同じ負荷で継続的に実行し、安定性を確認
for i in {1..10000}; do
    python your_processing_script.py --batch-size 32
    sleep 5
done
  • リソース使用量の監視 テスト中はGPUメモリやCPU使用率を継続的に監視し、徐々に増加する傾向がないか確認します
     このとき PyTorchやPythonの組み込み関数だけでなく、NVML(NVIDIA Management Library)を使用すて定期的に実行して監視するのがおすすめです。プロセス横断での使用メモリ量をより性格に取得することができます。
  • エラーログの監視 わずかな警告メッセージでも見逃さないようにログを注意深く監視します

互換性マトリックスの確認

PyTorchとCUDAのバージョン互換性を事前に確認します。PyTorch公式サイトには互換性マトリックスが公開されていますが、実際のアプリケーションでの互換性は環境によって異なることがあります。

当社ブログ「PyTorchがサポートするGPUの Compute Capability」 より

1. 運用面での対策

定期的な再起動の自動化

最も単純かつ効果的な対策は、サービスを定期的に再起動するスケジュールを設定することです。

# crontabの例: 毎日午前3時にサービスを再起動
0 3 * * * systemctl restart your_service

ヘルスチェックと自動再起動

定期的な再起動に加え、アプリケーションの状態を監視し、エラーが発生したら自動的に再起動するようにします

try:
    # メイン処理
    process_images()
except RuntimeError as e:
    if "CUDA error" in str(e):
        # ログ記録
        logging.error("CUDA error detected, restarting service")
        # プロセス再起動コード
        os.execv(sys.executable, ['python'] + sys.argv)

GPUリソースのモニタリング

NVML をつかってGPU使用率やメモリ消費を定期的に監視し、問題の予兆を検知します

import pynvml

def monitor_gpu():
    pynvml.nvmlInit()
    handle = pynvml.nvmlDeviceGetHandleByIndex(0)
    info = pynvml.nvmlDeviceGetMemoryInfo(handle)
    used_percent = info.used / info.total * 100
    
    # 使用率が90%を超えたら警告
    if used_percent > 90:
        logging.warning(f"GPU memory usage high: {used_percent:.2f}%")
        # 対策を実施 (キャッシュクリア、プロセス再起動など)

2. コード面での対策

コード面での一般的な対策も記載しておきましょう。
これは今回の根深い問題の処方箋ではありませんが、一般論としてご紹介いたします

CUDAキャッシュのクリア

定期的にPyTorchのCUDAキャッシュをクリアすることで、メモリリークの影響を減らすことができます

def clear_gpu_memory():
    torch.cuda.empty_cache()

# 一定回数の処理ごとにキャッシュクリア
for i, batch in enumerate(data_loader):
    process_batch(batch)
    if i % 100 == 0:
        clear_gpu_memory()

バッチサイズの最適化

こちらも一般論ですが、大きなバッチサイズはGPUメモリを圧迫します。より小さなバッチサイズを使用することで、メモリ問題を軽減できることがあります

# より小さなバッチサイズを設定
data_loader = DataLoader(dataset, batch_size=8, shuffle=True)

CPUフォールバックの実装

GPU処理に失敗した場合に自動的にCPUにフォールバックするロジックを実装すると、サービスの継続性が向上します

def process_with_fallback(image):
    try:
        # GPUで処理
        return process_on_gpu(image)
    except RuntimeError as e:
        if "CUDA error" in str(e):
            logging.warning("Falling back to CPU processing")
            # CPUで処理
            return process_on_cpu(image)
        else:
            raise

デバッグフラグの使用

エラーメッセージで推奨されているように、CUDA_LAUNCH_BLOCKING=1フラグを設定することで、非同期エラーの正確な位置を特定しやすくなります

CUDA_LAUNCH_BLOCKING=1 python your_script.py

3. アーキテクチャ面での対策

マイクロサービス化と水平スケーリング

モノリシックなアプリケーションを小さなマイクロサービスに分割することで、一部に問題が発生しても全体のサービスが継続できるようになります。

また、個別のサービスごとに再起動戦略を実装できます。

当社サービスも小さな単位でマイクロサービス化されており、同一の機能を提供するマイクロサービスが水平展開されています。マイクロサービスの定期的な再起動タイミングが重ならないようにスケジューリングすることでサービスの継続性を向上させることができます。

つまり複数のサーバーインスタンスを使用してロードバランシングすることで、一部のインスタンスが失敗しても、他のインスタンスがリクエストを処理できるようになります。

Kubernetes等のコンテナオーケストレーションツールを使用すると、こうした構成を効率的に管理できます。

まとめ

「CUDA error: unknown error」は、PyTorchとCUDAを使用した長時間実行サーバーでよく見られる問題です。

特にそれまでは安定していたのに、バージョンアップグレード後に突然発生することが多いため、事前の十分な検証と長時間テストが重要です。

この問題は完全に防ぐことは難しいものの、適切な運用戦略と予防策を組み合わせることで、その影響を最小限に抑えることができます。

バージョン互換性の慎重な検証、定期的な再起動の自動化、リソースモニタリング、コード最適化、適切なアーキテクチャ設計など、複数のアプローチを組み合わせて、信頼性の高いGPU対応サービスを構築することが重要です。

特に本番環境へのデプロイ前には、必ず数日間の安定性テストを行い、長時間実行時の問題を事前に発見することが、予期せぬダウンタイムを防ぐ鍵となります。

このような対策を導入することで、ディープラーニングやコンピュータビジョンのサーバーアプリケーションを、より安定して運用することができるでしょう。

また、当社ではGPU商用サービスをご検討中または、商用サービス運用中でお悩みをお持ちの事業者様へのGPUテクニカルコンサルティング・アドバイザリーのご提供も行っておりますので、お気軽にご相談くださいませ。

Read more

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部