【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ

【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ
Photo by Iva Rajović / Unsplash

こんにちは!

今日は、NumPyにおける配列の縦マージについてご説明いたします!

ご存じの通りNumPyは、Pythonで科学的計算を行うための強力なライブラリです。

複数のNumPy配列を縦にマージして大きな配列を作成する方法について、5つの異なるアプローチを詳しく見ていきましょう。

具体的には、(N,128)と(M,128)の形状を持つ複数のNumPy配列が格納されたPythonのリストから、(N+M,128)の形状を持つ単一のNumPy配列を作成する方法を説明します。

1. np.vstack() を使用する方法

np.vstack() 関数は、垂直方向(行方向)に配列をスタックするための関数です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.vstack(list_of_arrays)
print(merged_array.shape)  # (5, 128)

特徴

  • v(vertical縦に)にstack(積む)ということでメソッド名がとてもシンプルで直感的ですね。

使用場面

  • 複数の2次元配列を縦に結合する一般的なケース
  • メモリ効率と速度が重要な場合

2. np.concatenate() を使用する方法

np.concatenate() 関数も配列同士のマージでよく登場します。vstackよりももっと汎用性が高く指定した軸(axis)に沿って配列を結合します。

この関数の重要なパラメータの1つが axis です。

ただ、「軸ってなにさ?」と最初は戸惑うかもしれません、ので、少し軸についてもこまかくみていきましょう。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.concatenate(list_of_arrays, axis=0)
print(merged_array.shape)  # (5, 128)

axis=0 の詳細な説明

NumPyにおいて、axisは配列の次元を指定するパラメータです。

たとえば2次元配列の場合は

  • axis=0 は最初の次元(行)に沿って操作を行います。
  • axis=1 は2番目の次元(列)に沿って操作を行います。

たとえばaxis=0 を指定すると、以下のような動作になります:

  1. 配列を「縦方向」に結合します。
  2. 最初の次元(行数)が増加します。
  3. 2番目の次元(列数)は変わりません。

視覚的に表すと次のようになります:

Array1 (3x128):  [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    

Array2 (2x128):  [ ][ ][ ]
                 [ ][ ][ ]

Merged (5x128):  [ ][ ][ ]    (Array1)
                 [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    (Array2)
                 [ ][ ][ ]

axis=1 との比較

対照的に、axis=1 を使用すると

  1. 配列を「横方向」に結合します。
  2. 最初の次元(行数)は変わりません。
  3. 2番目の次元(列数)が増加します。
# 注意:この例では、入力配列の形状を変更しています
array1 = np.random.rand(3, 64)
array2 = np.random.rand(3, 64)
merged_horizontal = np.concatenate([array1, array2], axis=1)
print(merged_horizontal.shape)  # (3, 128)

視覚的には:

Array1 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Array2 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Merged (3x128): [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]

使用上の注意点

  • axis=0 を使用する場合、結合する配列の列数(2番目の次元)が同じである必要があります。
  • axis を指定しない場合、デフォルトで axis=0 が使用されます。
  • 3次元以上の配列の場合、axis の値とその効果はより複雑になります。

特徴

  • 柔軟性が高い(軸を指定可能)のが特徴ですね。axisの指定により3次元以上まで拡張できます。

使用場面

  • 結合する軸を動的に変更したい場合
  • 複数の次元で結合操作を行う必要がある場合
  • データの構造や処理の要件に応じて柔軟に対応したい場合

(おまけ) 3. リスト内包表記と np.row_stack() を使用する方法

np.row_stack()np.vstack() のエイリアスですが、リスト内包表記と組み合わせることで、より表現力の高いコードを書くことができます。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.row_stack([arr for arr in list_of_arrays])
print(merged_array.shape)  # (5, 128)

特徴

  • Pythonic な書き方をめざしたい人向け。

使用場面

  • 結合前に配列に対して操作を行いたい場合。

(おまけ) 4. np.r_ を使用する方法

np.r_ は、配列を行方向に結合するための簡潔な構文を提供します。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.r_[tuple(list_of_arrays)]
print(merged_array.shape)  # (5, 128)

特徴

  • 非常に簡潔な構文ですが、可読性の点でわざわざこの書き方をしなくてもよいきもします。

使用場面

  • どうしてもこの書き方がかっこいいとおもうとき。

(おまけ) 5. ループを使用して手動で結合する方法

この方法は、結合プロセスを完全に制御したい場合に有用です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

total_rows = sum(arr.shape[0] for arr in list_of_arrays)
merged_array = np.zeros((total_rows, 128))

current_row = 0
for arr in list_of_arrays:
    n_rows = arr.shape[0]
    merged_array[current_row:current_row+n_rows] = arr
    current_row += n_rows

print(merged_array.shape)  # (5, 128)

まとめ

おまけも含めて5つご紹介いたしましたが、一般的には、np.vstack()np.concatenate() が最も効率的かつ頻出かとおもいます。

それでは、また次回お会いしましょう!

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部