【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ

【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ
Photo by Iva Rajović / Unsplash

こんにちは!

今日は、NumPyにおける配列の縦マージについてご説明いたします!

ご存じの通りNumPyは、Pythonで科学的計算を行うための強力なライブラリです。

複数のNumPy配列を縦にマージして大きな配列を作成する方法について、5つの異なるアプローチを詳しく見ていきましょう。

具体的には、(N,128)と(M,128)の形状を持つ複数のNumPy配列が格納されたPythonのリストから、(N+M,128)の形状を持つ単一のNumPy配列を作成する方法を説明します。

1. np.vstack() を使用する方法

np.vstack() 関数は、垂直方向(行方向)に配列をスタックするための関数です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.vstack(list_of_arrays)
print(merged_array.shape)  # (5, 128)

特徴

  • v(vertical縦に)にstack(積む)ということでメソッド名がとてもシンプルで直感的ですね。

使用場面

  • 複数の2次元配列を縦に結合する一般的なケース
  • メモリ効率と速度が重要な場合

2. np.concatenate() を使用する方法

np.concatenate() 関数も配列同士のマージでよく登場します。vstackよりももっと汎用性が高く指定した軸(axis)に沿って配列を結合します。

この関数の重要なパラメータの1つが axis です。

ただ、「軸ってなにさ?」と最初は戸惑うかもしれません、ので、少し軸についてもこまかくみていきましょう。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.concatenate(list_of_arrays, axis=0)
print(merged_array.shape)  # (5, 128)

axis=0 の詳細な説明

NumPyにおいて、axisは配列の次元を指定するパラメータです。

たとえば2次元配列の場合は

  • axis=0 は最初の次元(行)に沿って操作を行います。
  • axis=1 は2番目の次元(列)に沿って操作を行います。

たとえばaxis=0 を指定すると、以下のような動作になります:

  1. 配列を「縦方向」に結合します。
  2. 最初の次元(行数)が増加します。
  3. 2番目の次元(列数)は変わりません。

視覚的に表すと次のようになります:

Array1 (3x128):  [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    

Array2 (2x128):  [ ][ ][ ]
                 [ ][ ][ ]

Merged (5x128):  [ ][ ][ ]    (Array1)
                 [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    (Array2)
                 [ ][ ][ ]

axis=1 との比較

対照的に、axis=1 を使用すると

  1. 配列を「横方向」に結合します。
  2. 最初の次元(行数)は変わりません。
  3. 2番目の次元(列数)が増加します。
# 注意:この例では、入力配列の形状を変更しています
array1 = np.random.rand(3, 64)
array2 = np.random.rand(3, 64)
merged_horizontal = np.concatenate([array1, array2], axis=1)
print(merged_horizontal.shape)  # (3, 128)

視覚的には:

Array1 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Array2 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Merged (3x128): [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]

使用上の注意点

  • axis=0 を使用する場合、結合する配列の列数(2番目の次元)が同じである必要があります。
  • axis を指定しない場合、デフォルトで axis=0 が使用されます。
  • 3次元以上の配列の場合、axis の値とその効果はより複雑になります。

特徴

  • 柔軟性が高い(軸を指定可能)のが特徴ですね。axisの指定により3次元以上まで拡張できます。

使用場面

  • 結合する軸を動的に変更したい場合
  • 複数の次元で結合操作を行う必要がある場合
  • データの構造や処理の要件に応じて柔軟に対応したい場合

(おまけ) 3. リスト内包表記と np.row_stack() を使用する方法

np.row_stack()np.vstack() のエイリアスですが、リスト内包表記と組み合わせることで、より表現力の高いコードを書くことができます。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.row_stack([arr for arr in list_of_arrays])
print(merged_array.shape)  # (5, 128)

特徴

  • Pythonic な書き方をめざしたい人向け。

使用場面

  • 結合前に配列に対して操作を行いたい場合。

(おまけ) 4. np.r_ を使用する方法

np.r_ は、配列を行方向に結合するための簡潔な構文を提供します。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.r_[tuple(list_of_arrays)]
print(merged_array.shape)  # (5, 128)

特徴

  • 非常に簡潔な構文ですが、可読性の点でわざわざこの書き方をしなくてもよいきもします。

使用場面

  • どうしてもこの書き方がかっこいいとおもうとき。

(おまけ) 5. ループを使用して手動で結合する方法

この方法は、結合プロセスを完全に制御したい場合に有用です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

total_rows = sum(arr.shape[0] for arr in list_of_arrays)
merged_array = np.zeros((total_rows, 128))

current_row = 0
for arr in list_of_arrays:
    n_rows = arr.shape[0]
    merged_array[current_row:current_row+n_rows] = arr
    current_row += n_rows

print(merged_array.shape)  # (5, 128)

まとめ

おまけも含めて5つご紹介いたしましたが、一般的には、np.vstack()np.concatenate() が最も効率的かつ頻出かとおもいます。

それでは、また次回お会いしましょう!

Read more

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部
サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

こんにちは! Qualitegコンサルティングです! 前回の第1回では、サブスクリプションビジネスの基本構造と、LTV・ユニットエコノミクスという革命的な考え方を解説しました。「LTV > 3 × CAC」という黄金律、覚えていますか? サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイドなぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。

By Qualiteg コンサルティング
Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部