【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ

【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ
Photo by Iva Rajović / Unsplash

こんにちは!

今日は、NumPyにおける配列の縦マージについてご説明いたします!

ご存じの通りNumPyは、Pythonで科学的計算を行うための強力なライブラリです。

複数のNumPy配列を縦にマージして大きな配列を作成する方法について、5つの異なるアプローチを詳しく見ていきましょう。

具体的には、(N,128)と(M,128)の形状を持つ複数のNumPy配列が格納されたPythonのリストから、(N+M,128)の形状を持つ単一のNumPy配列を作成する方法を説明します。

1. np.vstack() を使用する方法

np.vstack() 関数は、垂直方向(行方向)に配列をスタックするための関数です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.vstack(list_of_arrays)
print(merged_array.shape)  # (5, 128)

特徴

  • v(vertical縦に)にstack(積む)ということでメソッド名がとてもシンプルで直感的ですね。

使用場面

  • 複数の2次元配列を縦に結合する一般的なケース
  • メモリ効率と速度が重要な場合

2. np.concatenate() を使用する方法

np.concatenate() 関数も配列同士のマージでよく登場します。vstackよりももっと汎用性が高く指定した軸(axis)に沿って配列を結合します。

この関数の重要なパラメータの1つが axis です。

ただ、「軸ってなにさ?」と最初は戸惑うかもしれません、ので、少し軸についてもこまかくみていきましょう。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.concatenate(list_of_arrays, axis=0)
print(merged_array.shape)  # (5, 128)

axis=0 の詳細な説明

NumPyにおいて、axisは配列の次元を指定するパラメータです。

たとえば2次元配列の場合は

  • axis=0 は最初の次元(行)に沿って操作を行います。
  • axis=1 は2番目の次元(列)に沿って操作を行います。

たとえばaxis=0 を指定すると、以下のような動作になります:

  1. 配列を「縦方向」に結合します。
  2. 最初の次元(行数)が増加します。
  3. 2番目の次元(列数)は変わりません。

視覚的に表すと次のようになります:

Array1 (3x128):  [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    

Array2 (2x128):  [ ][ ][ ]
                 [ ][ ][ ]

Merged (5x128):  [ ][ ][ ]    (Array1)
                 [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    (Array2)
                 [ ][ ][ ]

axis=1 との比較

対照的に、axis=1 を使用すると

  1. 配列を「横方向」に結合します。
  2. 最初の次元(行数)は変わりません。
  3. 2番目の次元(列数)が増加します。
# 注意:この例では、入力配列の形状を変更しています
array1 = np.random.rand(3, 64)
array2 = np.random.rand(3, 64)
merged_horizontal = np.concatenate([array1, array2], axis=1)
print(merged_horizontal.shape)  # (3, 128)

視覚的には:

Array1 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Array2 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Merged (3x128): [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]

使用上の注意点

  • axis=0 を使用する場合、結合する配列の列数(2番目の次元)が同じである必要があります。
  • axis を指定しない場合、デフォルトで axis=0 が使用されます。
  • 3次元以上の配列の場合、axis の値とその効果はより複雑になります。

特徴

  • 柔軟性が高い(軸を指定可能)のが特徴ですね。axisの指定により3次元以上まで拡張できます。

使用場面

  • 結合する軸を動的に変更したい場合
  • 複数の次元で結合操作を行う必要がある場合
  • データの構造や処理の要件に応じて柔軟に対応したい場合

(おまけ) 3. リスト内包表記と np.row_stack() を使用する方法

np.row_stack()np.vstack() のエイリアスですが、リスト内包表記と組み合わせることで、より表現力の高いコードを書くことができます。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.row_stack([arr for arr in list_of_arrays])
print(merged_array.shape)  # (5, 128)

特徴

  • Pythonic な書き方をめざしたい人向け。

使用場面

  • 結合前に配列に対して操作を行いたい場合。

(おまけ) 4. np.r_ を使用する方法

np.r_ は、配列を行方向に結合するための簡潔な構文を提供します。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.r_[tuple(list_of_arrays)]
print(merged_array.shape)  # (5, 128)

特徴

  • 非常に簡潔な構文ですが、可読性の点でわざわざこの書き方をしなくてもよいきもします。

使用場面

  • どうしてもこの書き方がかっこいいとおもうとき。

(おまけ) 5. ループを使用して手動で結合する方法

この方法は、結合プロセスを完全に制御したい場合に有用です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

total_rows = sum(arr.shape[0] for arr in list_of_arrays)
merged_array = np.zeros((total_rows, 128))

current_row = 0
for arr in list_of_arrays:
    n_rows = arr.shape[0]
    merged_array[current_row:current_row+n_rows] = arr
    current_row += n_rows

print(merged_array.shape)  # (5, 128)

まとめ

おまけも含めて5つご紹介いたしましたが、一般的には、np.vstack()np.concatenate() が最も効率的かつ頻出かとおもいます。

それでは、また次回お会いしましょう!

Read more

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング
ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

11月に入り、朝晩の冷え込みが本格的になってきましたね。オフィスでも暖房を入れ始めた方も多いのではないでしょうか。 温かいコーヒーを片手に、シリーズ第4回「プロキシサーバーと統合Windows認証」をお届けします。 さて、前回(第3回)は、クライアントPCやサーバーをドメインに参加させる際の「信頼関係」の確立について深掘りしました。コンピューターアカウントが120文字のパスワードで自動認証される仕組みを理解いただけたことで、今回のプロキシサーバーの話もスムーズに入っていけるはずです。 ChatGPTやClaudeへのアクセスを監視する中間プロキシを構築する際、最も重要なのが「確実なユーザー特定」です。せっかくHTTPS通信をインターセプトして入出力内容を記録できても、アクセス元が「tanaka_t」なのか「yamada_h」なのかが分からなければ、監査ログとしての価値は半減してしまいます。 今回は、プロキシサーバー自体をドメインメンバーとして動作させることで、Kerberosチケットの検証を可能にし、透過的なユーザー認証を実現する方法を詳しく解説します。Windows版Squid

By Qualiteg AIセキュリティチーム
エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部