【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ

【極めればこのテンソル操作 】NumPy配列の縦マージ方法:5つのアプローチ
Photo by Iva Rajović / Unsplash

こんにちは!

今日は、NumPyにおける配列の縦マージについてご説明いたします!

ご存じの通りNumPyは、Pythonで科学的計算を行うための強力なライブラリです。

複数のNumPy配列を縦にマージして大きな配列を作成する方法について、5つの異なるアプローチを詳しく見ていきましょう。

具体的には、(N,128)と(M,128)の形状を持つ複数のNumPy配列が格納されたPythonのリストから、(N+M,128)の形状を持つ単一のNumPy配列を作成する方法を説明します。

1. np.vstack() を使用する方法

np.vstack() 関数は、垂直方向(行方向)に配列をスタックするための関数です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.vstack(list_of_arrays)
print(merged_array.shape)  # (5, 128)

特徴

  • v(vertical縦に)にstack(積む)ということでメソッド名がとてもシンプルで直感的ですね。

使用場面

  • 複数の2次元配列を縦に結合する一般的なケース
  • メモリ効率と速度が重要な場合

2. np.concatenate() を使用する方法

np.concatenate() 関数も配列同士のマージでよく登場します。vstackよりももっと汎用性が高く指定した軸(axis)に沿って配列を結合します。

この関数の重要なパラメータの1つが axis です。

ただ、「軸ってなにさ?」と最初は戸惑うかもしれません、ので、少し軸についてもこまかくみていきましょう。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.concatenate(list_of_arrays, axis=0)
print(merged_array.shape)  # (5, 128)

axis=0 の詳細な説明

NumPyにおいて、axisは配列の次元を指定するパラメータです。

たとえば2次元配列の場合は

  • axis=0 は最初の次元(行)に沿って操作を行います。
  • axis=1 は2番目の次元(列)に沿って操作を行います。

たとえばaxis=0 を指定すると、以下のような動作になります:

  1. 配列を「縦方向」に結合します。
  2. 最初の次元(行数)が増加します。
  3. 2番目の次元(列数)は変わりません。

視覚的に表すと次のようになります:

Array1 (3x128):  [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    

Array2 (2x128):  [ ][ ][ ]
                 [ ][ ][ ]

Merged (5x128):  [ ][ ][ ]    (Array1)
                 [ ][ ][ ]    
                 [ ][ ][ ]    
                 [ ][ ][ ]    (Array2)
                 [ ][ ][ ]

axis=1 との比較

対照的に、axis=1 を使用すると

  1. 配列を「横方向」に結合します。
  2. 最初の次元(行数)は変わりません。
  3. 2番目の次元(列数)が増加します。
# 注意:この例では、入力配列の形状を変更しています
array1 = np.random.rand(3, 64)
array2 = np.random.rand(3, 64)
merged_horizontal = np.concatenate([array1, array2], axis=1)
print(merged_horizontal.shape)  # (3, 128)

視覚的には:

Array1 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Array2 (3x64):  [ ][ ][ ]
                [ ][ ][ ]
                [ ][ ][ ]

Merged (3x128): [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]
                [ ][ ][ ][ ][ ][ ]

使用上の注意点

  • axis=0 を使用する場合、結合する配列の列数(2番目の次元)が同じである必要があります。
  • axis を指定しない場合、デフォルトで axis=0 が使用されます。
  • 3次元以上の配列の場合、axis の値とその効果はより複雑になります。

特徴

  • 柔軟性が高い(軸を指定可能)のが特徴ですね。axisの指定により3次元以上まで拡張できます。

使用場面

  • 結合する軸を動的に変更したい場合
  • 複数の次元で結合操作を行う必要がある場合
  • データの構造や処理の要件に応じて柔軟に対応したい場合

(おまけ) 3. リスト内包表記と np.row_stack() を使用する方法

np.row_stack()np.vstack() のエイリアスですが、リスト内包表記と組み合わせることで、より表現力の高いコードを書くことができます。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.row_stack([arr for arr in list_of_arrays])
print(merged_array.shape)  # (5, 128)

特徴

  • Pythonic な書き方をめざしたい人向け。

使用場面

  • 結合前に配列に対して操作を行いたい場合。

(おまけ) 4. np.r_ を使用する方法

np.r_ は、配列を行方向に結合するための簡潔な構文を提供します。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

merged_array = np.r_[tuple(list_of_arrays)]
print(merged_array.shape)  # (5, 128)

特徴

  • 非常に簡潔な構文ですが、可読性の点でわざわざこの書き方をしなくてもよいきもします。

使用場面

  • どうしてもこの書き方がかっこいいとおもうとき。

(おまけ) 5. ループを使用して手動で結合する方法

この方法は、結合プロセスを完全に制御したい場合に有用です。

import numpy as np

list_of_arrays = [
    np.random.rand(3, 128),
    np.random.rand(2, 128)
]

total_rows = sum(arr.shape[0] for arr in list_of_arrays)
merged_array = np.zeros((total_rows, 128))

current_row = 0
for arr in list_of_arrays:
    n_rows = arr.shape[0]
    merged_array[current_row:current_row+n_rows] = arr
    current_row += n_rows

print(merged_array.shape)  # (5, 128)

まとめ

おまけも含めて5つご紹介いたしましたが、一般的には、np.vstack()np.concatenate() が最も効率的かつ頻出かとおもいます。

それでは、また次回お会いしましょう!

Read more

産業交流展2024 に出展いたしました

産業交流展2024 に出展いたしました

こんにちは! 2024年11月21日~11月23日の3日間 東京ビックサイトにて開催された産業交流展2024(リアル展)において、当社のプロダクト・サービスの展示を行いました。 多くの方々に当社ブースへお立ち寄りいただき、誠にありがとうございました! (産業交流展2024のオンライン展示会は 2024年11月29日まで開催中です!) 本ブログでは、展示会当日の様子を簡単にレポートさせていただきます。 展示会の様子 当社ブースは「東京ビジネスフロンティア」パビリオン内に設けていただきました。 当社からは3名体制で、 エンタープライズLLMソリューション「Bestllam 」やLLMセキュリティソリューション「 LLM-Audit」 、経産省認定講座「AI・DX研修」についてデモンストレーションおよびご説明・ご案内をさせていただきました。 さらに、ステラリンク社さまのご厚意により、このかわいい移動式サイネージ「AdRobot」に、当社ブースの宣伝もしていただきました! 特典カード さて、ブースにお立ち寄りの際にお渡しした、Bestllam特典カードの招待コー

By Qualiteg ビジネス開発本部 | マーケティング部
「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

こんにちは! 本稿はWindows Server 2022 Datacenterエディションに「Windowsターミナル」をインストールする方法のメモです。 ステップバイステップでやるのは少し手間だったので、Powershellにペタっとするだけで自動的にインストールできるよう手順をスクリプト化しました。 管理者権限で開いた Powershell に以下、スクリプトをペタっとすると、後は勝手に「Windowsターミナル」がインストールされます。 (ただしスクリプトの実行結果の保証も責任も負いかねます) なにが手間か 何が手間かというと、Windows Server 2022 では、StoreもApp Installer(winget)もデフォルトではインストールされていないため「Windowsターミナル」をマニュアルでインストールしなければなりませんでした。 そこでペタっとするだけのスクリプト化 管理者権限で開いたPowershellに以下のスクリプトをペタっとすると「Windowsターミナル」が無事インストールされます。 パッケージのダウンロード先には [ユーザ

By Qualiteg プロダクト開発部
産業交流展2024に出展いたします

産業交流展2024に出展いたします

平素は当社事業に格別のご高配を賜り、厚く御礼申し上げます。 以前にもご案内させていただきましたが、この度、株式会社Qualitegは、多くの優れた企業が一堂に会する国内最大級の総合展示会「産業交流展2024」に出展する運びとなりました。 本展示会では、当社の最新のサービス・ソリューションを展示させていただきます。ご来場の皆様に直接ご説明させていただく貴重な機会として、ぜひブースまでお立ち寄りくださいませ 展示会概要 * 名称: 産業交流展2024 * 会期: 2024年11月20日(水)~22日(金) * 会場: 東京ビッグサイト 1・2ホール、アトリウム * 西1ホール 東京ビジネスフロンティアゾーン ビ-15 * 入場料: 無料(事前登録制) 開催時間 * 11月20日(水) 10:00~17:00 * 11月21日(木) 10:00~17:00 * 11月22日(金) 10:00~16:00

By Qualiteg ニュース
Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。 そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。 1. ユーザー中心の問題定義 サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします: * ターゲットユーザーへの徹底的なインタビュー * 既存の解決策の分析と不足点の特定 * ユーザーの行動パターン

By Join us, Michele on Qualiteg's adventure to innovation