LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

こんにちは!

本日は LLMサービスの自社構築する際の推論基盤プロビジョニング、GPUプロビジョニングについて数回にわけて解説いたします。

はじめに

LLMの進化に伴い、ChatGPTやClaudeといったパブリックなLLMの活用は企業においても急速に広がってきました。しかし先進的な企業はこれらの汎用LLMに加えて、「領域特化型」「ドメイン特化型」といった専用LLMの構築へと歩みを進めています。こうした動きの背景には、企業固有の専門知識への対応力強化と情報セキュリティの確保という二つの重要なニーズがあります。

一般的なパブリックLLMでは対応できない企業固有の専門知識や機密情報の取り扱いが必要なケースが増えているため、自社LLMの構築や自社サーバーでの運用を検討する企業が急増しています。特に金融、医療、製造、法務といった専門性の高い領域では、業界特化型の独自LLMが競争優位性をもたらすと認識されています。

しかし、業界特化型のLLMを自社で運用することは簡単ではありません。自社運用を決断した場合、まず最初に取り組むべきは適切な推論環境の整備です。オンプレミス環境を構築するにしても、クラウドサービスを利用するにしても、どのようなハードウェアスペックが必要で、特にどのようなGPUがどれだけの数量必要になるのかを事前に見積もる必要があります。

これは単にGPUを購入すれば良いという話ではなく、サービスの想定負荷やモデルの特性に基づいた緻密な計算が必要です。必要なGPUの種類や数量を適切に見積もることで、過剰投資を避けつつ、必要な性能を確保するための調達費用を正確に見積もることができます。

こうした自社運用型LLMサービスを効果的に構築するためには、適切なGPUリソースと推論環境の「プロビジョニング」が不可欠です。特にコスト効率と性能のバランスを取りながら、ユーザー体験を損なわないLLM環境を構築することは容易ではありません。

本記事では、LLMサービスの本番稼働前に必要な「推論基盤プロビジョニング」の概念と、具体的な実施ステップについて解説します。

本記事は株式会社Qualiteg提供の 生成AI/LLM基礎研修2024-2025資料から一部抜粋して再編集しております。実測データは一部2024年当時のものとなりますのでご了承ください

推論基盤プロビジョニングとは

LLMサービス構築の鍵となる推論基盤プロビジョニングとは

自社でLLMサービスを本格的に構築・運用する企業が増える中、本番環境への移行前に適切なハードウェアリソースを確保することが課題となっています。特に高性能GPUの調達と最適な推論環境の構築は、サービスの品質とコスト効率を左右する重要な要素です。

LLMサービスの本番化の前に必要なGPUおよび推論用サーバーリソース(推論環境)を準備しておくことを「推論基盤プロビジョニング」と呼びます。これはGPUの確保だけでなく、サービス全体を支える推論インフラの設計と準備を含む包括的なプロセスです。

推論基盤プロビジョニングの概要

推論基盤プロビジョニングとは、LLMサービスの本番稼働の前に必要なGPUおよび推論用サーバーリソース(推論環境)を準備しておくことを指します。

この工程は大きく分けて以下の2つの要素から構成されています

1. GPUプロビジョニング

GPUプロビジョニングでは、提供予定のLLMサービスの想定負荷やLLMモデルの素性に応じて、LLMサービスの要件を満たすGPUの種類や数を決定します。

具体的には

  • サービスの同時利用者数予測
  • 応答時間の要件
  • 処理すべきトークン数
  • 選定したLLMモデルの要求スペック
  • コスト効率

などを総合的に判断し、最適なGPUの種類(NVIDIA A100, H100など)と必要台数を算出します。

2. 推論環境プロビジョニング

推論環境プロビジョニングでは、GPUが搭載されるサーバー・ワークステーションやクラウド環境を決め、サービス提供に必要となるソフトウェアを適切な環境に配置し、必要な設定を行う作業が含まれます。

ここでの主な作業は

  • 推論サーバーのハードウェア選定または仮想環境の構築
  • コンテナ環境(Docker, Kubernetes)の構築
  • モデルサーブィングフレームワーク(vLLM, TensorRT-LLM)の導入
  • 負荷分散の設定
  • モニタリングシステムの導入
  • セキュリティ対策

Qualitegが実践する7ステップGPUプロビジョニングプロセス

さて、前節で説明した推論基盤プロビジョニングの重要性を踏まえ、ここではQualitegが実際に行っている具体的なGPUプロビジョニングプロセスを紹介します。Qualitegでは、実現したいLLMサービスに必要なGPUの種類と必要ボリュームを以下の7つのステップで決定します。

Step 1: 推論速度の定義

まず最初に、実現したい推論速度を明確に定義します。推論速度は「1秒間に何トークン出力できるか」という単位(トークン/秒)で測定します。業界の参考値として、OpenAIのChatGPTは約15〜25トークン/秒の速度であり、最低ラインとしてはこの程度の速度が一般的に求められます。例えば、25トークン/秒などの具体的な目標を設定します。

Step 2: LLMサービスへのリクエスト数見積もり

次に、提供するLLMサービスに対するユーザーのリクエスト数の見込みから、同時リクエスト数を概算します。特にピーク時とオフピーク時で強く表れるサービスの場合は、ピーク時の同時リクエスト数を予測することが重要です。例えば、ピーク時には同時40リクエストが発生すると予測する場合があります。

Step 3: 使用モデルの推論時消費メモリ見積もり

LLMサービスで使用するモデルのフットプリント(GPUに読み込まれたときに消費するメモリの大きさ)を見積もります。また、KVキャッシュ(推論中のテキスト生成に消費されるGPUメモリ)の容量も考慮に入れる必要があります。例えば、Llama3-8Bモデルの場合、16GB+KVキャッシュ分のメモリが必要になります。

Step 4: 推論エンジン選定

LLMモデルに対応した推論エンジンを選定します。推論エンジンとは、推論処理の計算を効率的に行うソフトウェアです。モデルに最適化されたエンジンを選ぶことが重要で、GPU依存、プラットフォーム依存があるため、非対応のものは選定しないようにします。例えば、TensorRTなどが代表的な推論エンジンとして挙げられます。

Step 5: GPUノード構成見積もり

LLMサービスの要件を満たすGPUノードが何台必要かを算定します。Step 2の同時リクエスト数とStep 3のメモリ見積もりからGPUリクエスト計算時間で概算したものに対し、このステップではGPUスペックと同時処理を勘案して見積もります。複数の構成案を作成するのが一般的ですが、最初からコストキャップがあることが多いため、それも勘案しながら構成を見積もります。例として、A5000 × 4などの構成が考えられます。

Step 6: GPUノード構成案での負荷試験

Step 5で作ったGPU構成案と選定した推論エンジンの組み合わせで、実際に負荷試験を行います。Step 3で算出した消費メモリはあくまで理論値であるため、実際に負荷をかけて実測してデータを収集することが重要です。この負荷試験にはLocustなどのツールが使用されることがあります。

Step 7: 推論体験とコストのトレードオフ検討

最後に、Step 6で収集したデータをもとに、本番向けのGPU構成、推論エンジンを決定します。数値の良い組み合わせほど高価なGPUが必要になる傾向があるため、推論体験(主に推論速度)とコストのトレードオフを検討します。この検討結果は最終的に推論環境仕様書としてまとめられます。

それでは、重要なステップの内容をみていきましょう。


STEP1: 推論速度の定義 - LLMサービス構築の基本

同期型と非同期型のLLMサービス

LLMサービスを提供する形態には「同期型」と「非同期型」の2つのパターンがあります。

同期型LLMサービスとは

チャットボットのような「リアルタイム性」や「即時性」が求められるサービスが同期型LLMサービスに分類されます。ユーザーが質問や指示を入力すると、即座に応答が返ってくることが期待されます。この場合、推論速度が速いほど応答を受け取るユーザー体験は向上するため、同期型LLMサービスを提供する際には、最初に「目指すべき推論速度」を明確に定義することが重要です。

同期型LLMサービスは同時に大量のリクエストが来ることを想定する必要があり、リクエストを捌くために複数のGPUや推論環境が必要になるため、実現難易度とコストは非同期型に比べて高くなります。

非同期型LLMサービスとは

即時性が求められない用途では、例えば

  • 大量の文章を要約する
  • 大量の文章を翻訳する

といった処理をLLMに一括して実行させ、終わり次第結果を通知させるようなユースケースがあります。このようなパターンを非同期型サービスと呼びます。

「数時間、数日かけて終われば良い」というレベル感の非同期型LLMサービスの場合、1台のGPUでも効率的に処理できる場合があり、実現難易度は低く、コストも抑えられる利点があります。

ストリーミングレスポンスによる体験向上

ユーザーが入力してからLLMが応答を返し、ユーザーの画面に表示されるまでの時間を「レイテンシ」と呼びます。

レスポンス方式には以下の2種類があります

シングルバッチレスポンス(一括返信)

入力されたプロンプトからテキスト生成を行い、すべてのテキストの生成が終わってからレスポンスする方式です。生成結果が出そろうまでユーザーに返信しないため、ユーザーは結果を待たされることになります。この場合、総レイテンシが約10秒かかると、結果がすべて一度に表示されます。

ストリーミングレスポンス(逐次返信)

入力されたプロンプトからテキスト生成を行い、1トークン(または数トークン)生成されるごとに逐次返信する方式です。テキスト生成の過程を見ることができるので、一括返信よりもユーザー体験が向上します。

初期応答レイテンシが約2秒で最初の結果が表示され始め、完全応答レイテンシが約11秒でも、ユーザーは少しずつ結果が表示されるのを見ることができるため、体感的な待ち時間が短く感じられます。

推論速度の単位と目標設定

同期型LLMサービスの場合、まず推論速度を設定することが重要です。

推論速度の単位

推論速度は「1秒間に何トークン生成できるか」を示す「トークン/秒」(英語表記ではT/sやtokens/sec)で表されます。これはLLMサービスの性能を表す際に最もよく使われるメトリクスです。

最低限目指したい推論速度

リクエストピーク時に15〜25トークン/秒の推論速度を実現できることが最低ラインとされています。ここで設定した推論速度をピーク時に実現できるよう、後続のステップでGPU構成を見積もっていきます。

主要LLMサービスの推論速度比較

各社のLLMチャットサービスの推論速度を比較すると

  • ChatGPT(GPT4): 15〜25トークン/秒
  • ChatGPT(GPT4o): 25〜50トークン/秒
  • Claude3 Haiku: 120トークン/秒
  • Groq(Llama70B): 300トークン/秒

目指すべき推論速度の目安

現実的な目標としては、ChatGPTのスピードがエンドユーザーの体験基準と考えると、GPT-4oと同程度の40〜70トークン/秒が実現したい推論速度の目安となります。

LLMの推論速度は以下のように分類できます

  • 低速(〜30トークン/秒): GPT-4(15〜25)、DeepSeek-V2-Chat(25)
  • 中速(30〜100トークン/秒): GPT-4o(40〜70)
  • 高速(100〜300トークン/秒): Claude3 Haiku(120)、Fireworks Llama3 70B(200)
  • 超高速(300トークン/秒〜): Groq Llama3 70B(302)、Groq Llama3 8B(900)

自社LLMサービスの判定ラインとしては、15トークン/秒(C判定)、30トークン/秒(B判定)、70トークン/秒(A判定)といった基準が考えられます。

これらの推論速度の定義が、以降のGPUプロビジョニングプロセスの基盤となり、必要なGPUリソースの算出に直接影響します。

今回のまとめ:効果的なGPUプロビジョニングへの道

今回は、LLMサービス構築における推論基盤プロビジョニングの基本概念と、Qualitegが実践している7ステップGPUプロビジョニングプロセスの中でも特に重要なSTEP1「推論速度の定義」について詳しく解説しました。

同期型と非同期型のLLMサービスの違いを理解し、ユースケースに応じた適切な推論速度目標を設定することがプロビジョニングの第一歩です。ChatGPTやClaude3などの主要LLMサービスの推論速度を参考にしながら、ユーザー体験を左右する重要な指標として15〜70トークン/秒の範囲で目標を定めることが推奨されます。

次回は、STEP2「LLMサービスへのリクエスト数見積もり」、STEP3「使用モデルの推論時消費メモリ見積もり」について詳しく解説します。DAUからの総GPU時間と同時リクエスト数の算出方法、KVキャッシュの計算方法、そして実際の負荷試験の実施手順と測定項目について学びましょう。

GPUプロビジョニングプロセスは単なる技術的な計算ではなく、ビジネス要件とユーザー体験を満たすための戦略的なアプローチです。適切なGPUリソースを確保することで、コスト効率の良い安定したLLMサービスの提供が可能になります。

それでは次回またお会いしましょう!

Read more

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部