[自作日記1] 現代の自作PCアーキテクチャを理解する

[自作日記1] 現代の自作PCアーキテクチャを理解する

PC自作にあたって、まずは、2023年現在のPCアーキというものを学んでおこうとおもいます。

CPUとマザーボードとチップセット

チップセット

マザーボードには、各パーツ間の通信を管理するための「チップセット」という重要なコンポーネントが搭載されています。

あるチップセットは対応できるCPUが決められており、そのチップセットに対応していないCPUはのせることができません。

逆にCPU側からみれば、あるCPUに対して、それに対応できるチップセットが限定されているともいえます。

あるCPUに対してチップセットは1つだけではなく、実装されている機能のレベルに応じて複数のチップセットが対応しています。

チップセットとCPUとCPUソケット形状

チップセットとCPUはお互いに対応関係が決まっていると説明しましたが、CPUをマザーボードにはめ込むときのソケット形状も物理的に一致しています。

例えば Z690 というチップセットは Intel Core i7 12700 という第12世代のCPUに対応しています。

また、 Intel Core i7 12700 のソケット形状は LGA 1700 で、
Z690 チップセットを搭載したマザーボードは当然 LGA 1700 形状のCPUをはめ込めるようになっていることになります。

第12世代CoreシリーズCPU用チップセットはインテル600シリーズと呼ばれるチップセットとなっており「Z690」「H670」「B660」「H610」など複数あり、これらはオーバークロックの対応有無など、機能面で異なります。

また、インテル700シリーズチップセットとして、「Z790」「H770」「B760」 などがあります。

実はインテル600シリーズも700シリーズチップセットともLGA1700ソケットを採用しており、
第12世代インテルCoreシリーズCPU、第13世代インテルCoreシリーズCPUどちらもはめ込むことができますが、すべてが動作するわけではなく、また、マザーボードによっては BIOS の更新が必要なものがあるため、マザーボードごとに対応を確認をする必要があります。


Credit [Jacek Halicki] / Wikimedia Commons / CC-BY-SA-4.0

ノースブリッジとサウスブリッジ

現在はCPUとチップセットにそれぞれの役割分担がありますが、ひと昔のPCではノースブリッジ、サウスブリッジとしてざっくりを役割が分かれている時代がありました。CPUとチップセットの役割分担を学ぶ上で、少しPCアーキの歴史を振り返ってみます。

ノースブリッジはマザーボードの上部に位置し、サウスブリッジは下部に位置するコンポーネントを指していました。ノースが上で、サウスが下という、一般的な地図とおなじような感覚で命名されていますね。

(Java Swing などでもノース、サウスのように指定していたので、このメタファーは昔はそれなりにわかりやすかったのでしょう。)

ノースブリッジ については、CPU、RAM、PCI Expressデバイス(例えばグラフィックカードなど)と直接通信を行うもので、この部分は高性能が求められるため、高速な通信が必要とされる部品と接続される役割を果たしてきました。
しかし、現在では、 ノースブリッジの機能は多くの場合、CPUに統合されており 、チップセットではなくCPUがこれらの高速通信の仕事を担当しています。

サウスブリッジ に関しては、IOデバイス(USB、オーディオ、シリアルデバイスなど)、BIOS、IDE、LANカードなどと通信を行います。これらは比較的低速で、大量のデータ転送を必要としないコンポーネントです。
現在、サウスブリッジの役割は主にチップセット によって担われています。

というわけで、高速通信をする仕事は CPU 、IOデバイスのように低速な仕事はチップセットのように棲み分けていると覚えておけばOKです。

PCI Express と「レーン」

PCI Expressは、グラフィックカードをはじめとする各種拡張カードをマザーボードに接続するためのスロットおよび通信規格です。この規格には「 レーン 」と呼ばれる伝送路が用いられており、データの送受信が行われます。

レーンは、単独で使用されることもありますが、 複数のレーンを束ねることにより、さらに高速な通信が可能 になります。このようにレーンを束ねることで、データ転送の効率を大幅に向上させることができ、高性能な拡張カードが求める大量のデータ転送を効率的に処理することが可能です。このため、PCI Expressは現代のコンピュータシステムにおいて重要な役割を担っています。

PCI Express には レーン という伝送路があり、 複数のレーンを束ねる と速くなる、と覚えておきましょう。


レーンのスピード

レーン1本あたりのスピードは PCI Express の 世代 ごとに規格によって以下のように、定められています。

  • PCI Express は PCIe のように省略して記述することができます
  • PCI Express には世代(バージョン) があり PCI Express version 1.0 を gen1, PCI Express version 2.0 をgen2 のように略記されることがあります。
世代 伝送速度(片方向)
PCIe gen 1 2.5 gbits/s 0.3125 gbytes/s
PCIe gen 2 5 gbits/s 0.625 gbytes/s
PCIe gen 3 8 gbits/s 1 gbytes/s
PCIe gen 4 16 gbits/s 2 gbytes/s
PCIe gen 5 32 gbits/s 4 gbytes/s

表のように第5世代の PCI Expressだと、レーンが1本で 4GByte/s の通信速度となっています。

PCI Expressの 世代があがるごとに2倍の伝送量になっていますね。


複数レーンをたばねたときの伝送速度一覧

たとえば、PCIe gen 5でレーンを16本束ねた伝送路を PCIe gen5 x16 などと書きます。

これは 64GB/s でデータを伝送できる、ということになります

以下に、レーンを束ねた本数と、伝送速度をまとめました。

x4 (4レーン使用時の帯域)
世代 伝送速度(片方向)
PCIe gen 1 10 gbits/s 1.25 gbytes/s
PCIe gen 2 20 gbits/s 2.5 gbytes/s
PCIe gen 3 32 gbits/s 4 gbytes/s
PCIe gen 4 64 gbits/s 8 gbytes/s
PCIe gen 5 128 gbits/s 16 gbytes/s
x8 (8レーン使用時の帯域)
世代 伝送速度(片方向)
PCIe gen 1 20 gbits/s 2.5 gbytes/s
PCIe gen 2 40 gbits/s 5 gbytes/s
PCIe gen 3 64 gbits/s 8 gbytes/s
PCIe gen 4 128 gbits/s 16 gbytes/s
PCIe gen 5 256 gbits/s 32 gbytes/s
x16 (16レーン使用時の帯域)
世代 伝送速度(片方向)
PCIe gen 1 40 gbits/s 5 gbytes/s
PCIe gen 2 80 gbits/s 10 gbytes/s
PCIe gen 3 128 gbits/s 16 gbytes/s
PCIe gen 4 256 gbits/s 32 gbytes/s
PCIe gen 5 512 gbits/s 64 gbytes/s

新しい世代ほど速く、たくさん束ねるほど速くなるということですね。


コラム:1Bytes/s の伝送路で 4k 画像は1秒間で何枚送信できる?

4K画像 1枚は 3,840×2,160 = 8,294,400 ピクセルあり、
各ピクセルでRGB各8ビット(1バイト)だとすると 無圧縮状態で 8294400*3 = 24883200 バイト(24MBytes)となります。

ここで 1GBytes は 1024*1024*1024 = 1073741824 バイトなので、 1073741824 ÷ 24883200 = 43.15

つまり、1GByte の伝送路だと 1秒間に4K 画像を 43 枚伝送できることになります。(理論値では)

PCIe gen 5 x 16 の場合は 64 gbytes/s なので、4K 画像なら 43*64 = 2761 枚ということになる。
画像を送るだけなら、 2761 FPS を出せるということになります。
  

PCI スロットの形状

PCIe スロットの形状には以下のような規格があります。


PCI Express x1 スロット
PCI Express x4 スロット
PCI Express x8 スロット
PCI Express x16 スロット

Credit Erwin Mulialim / Wikimedia Commons / CC BY-SA 3.0

これらは、あくまでスロットの物理的なサイズで分類したもので、
物理的な形状が PCI Express x16スロットでも、
内部では x8 のレーン帯域しか対応していない PCI Express スロットもあります。

また、物理的な形状が x16なPCIe拡張ボードでも、
その拡張ボードが x8レーン帯域しか使わないという場合もあります。

スロットの形状と、内部での使用レーン数は必ずしも一致しないということ覚えておきましょう

PCI スロット数

E-ATX、ATX フォームファクタ(ケース)の場合、PCI expressのスロット数は 7 スロットとなります。

今回はここまでです!
おつきあいありがとうございました!

次回は、実際のチップセットのブロック図をみながら理解を深めていきたいとおもいます。


navigation

Read more

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

1. 位置損失 (L_position) - 口の形の正確さ 時間 口の開き 正解 予測 L_position = Σᵢ wᵢ × ||y_pred - y_true||² 各時点での予測値と正解値の差を計算。重要なパラメータ(顎の開き、口の開き)には大きな重みを付けます。 jaw_open: ×2.0 mouth_open: ×2.0 その他: ×1.0 2. 速度損失 (L_velocity) - 動きの速さ 時間 速度 t→t+1 v = y[t] -

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング