[自作日記2] CPUとチップセットと PCI Express の関係

[自作日記2] CPUとチップセットと PCI Express の関係

こんにちは!今日はCPUとチップセットについて学びたいとおもいます!

最終的にはAI開発に使えるGPUマシンをつくりたいのですが、GPUってパソコンのどのあたりに入れて使うものでしょうか。

black Gigabyte graphics card
Photo by Rafael Pol / Unsplash

はい、正解は、パソコンのPCI Express のスロットに挿して使います。

「知っとるわ」という声が聞こえました。

さすがです。

では、次の問いです。

GPU が挿さる PCI Express スロットのレーンはどこにつながってるのでしょうか?

1.「チップセット」
2.「CPU」

正解は2のCPUです。

この問いの答えが一瞬で出た方は、本記事を読みとばしていただいて問題ありません。

「?」となった方は、本記事に参考になる部分があるかもしれません。

ということで、GPU は PCI Express という拡張スロットに挿して使うことはご存じかもしれませんが、PCI Express は内部でどのようにつながっているのでしょうか。実はGPUパソコンを作るときにこの辺がけっこう重要になります。

今後、GPU2枚挿し、GPU4枚挿し、など本格的なGPUマシンを作るときにもこのあたりの知識が重要になりますので、学んでおいて損はないですね。

さあ、進めていきましょう!

先ほどの問いの続きから、ですが、
PCI Express には CPU と直接つながっているものと、チップセットからつながっているものの2種類があります。

まずはPCI Express から CPU やチップセットにつながっている伝送路= 「レーン」についてもう少しみていきましょう

PCI Express と CPU をつなぐレーン

前述のとおり、PCI Express は CPU から直接つながるものと、チップセットからつながるものがあります

  • PCI Express ⇔ CPU

  • PCI Express ⇔ チップセット

では、具体的に見ていきましょう。

CPUとPCI Express が接続されているレーンは、たとえば、 第12世代のインテル Core シリーズCPU の場合、CPUから直接PCI Express に
接続されるレーンは 20本 あります。

その内訳は、

  • PCIe gen 5 16レーン
  • PCIe gen 4 4レーン

となっています。

「gen5 のレーンが 16本ってこと? gen4 のレーンが 4本ってこと? CPUからPCIExpressにのびているレーンの本数と規格が違うの?」

はい、そのとおりです。

レーンには1本ずつ規格があり、このレーンは PCIe gen5(=PCI Express の5世代目 という意味でしたね) 、このレーンは PCIe gen4 のようにそれぞれ規格がわかれています。

パソコンの中でCPUやチップセットにつながってるPCI Expressのレーンは全てがおなじ規格ではない、というのがまずポイントです。

では、実際に インテルの12世代CPU に対応した Z690 チップセット というものの、ブロック図をみながら理解を深めていきましょう。

(ブロック図とは、システムの構成要素を図にしたものです。)

以下は Z690 チップセットのブロック図です。

このブロック図を全部ただちに理解する必要はありません。

私たちは 、ふつうのパソコンではなく、「GPU搭載マシン」を作るので、GPUマシンにとって必要なところを学びます。

GPUにとって重要なのはこのブロック図の左上です。赤で示しました。

まずは、ここを読み解いていきましょう。

拡大するとこんなかんじです。

これは、 CPU と直接接続されている PCI Express について説明しています。

この左上あたりをみると、

のように書いてあります。

これが冒頭にかいたとおり CPU から PCI Express のレーンが 20 本のびている 件です。 16本の PCIe 5.0 レーンと 4本の PCIe 4.0 レーンの合計 20本のレーンが CPU と直接接続されています。

つまり、 合計20本あるレーンのうち

・gen5 規格 のPCI Express のレーンを16本束にしたスロット
・gen4 規格 のPCI Express のレーンを4本束にしたスロット

が使えるよ。といっています。

そして、通常、CPU からのびてる、この gen5 規格 のPCI Express のレーンを16本束にしたスロットグラフィックボード(GPU) 用に使用されます!

PCIe 5.0 は前回の記事に示した通り、大変高速ですので、GPUのような高速データ転送を要求される用途向きというわけです。

PCI Express の世代と伝送速度(理論値)

理解をより深めるために、レーン1本ずつを視覚的に示してみました

GPUが主眼なので、GPU が接続される CPU ⇔ PCI Express に着目しましたが、基本的には、他のレーンも同じです。

PCI Express には、チップセット側と接続されているレーンもあり、上の図のようになっています。

この仕組みが理解できると、マザーボードやチップセットのスペックシートが読み解けるようになります。

さて、さきほどのブロック図の左上には↓という表記も書いてありました。これはどういうことでしょうか。

そちらは、次回にご説明いたします。
これはグラボ二枚挿しにも関係のある内容となっていますのでご期待くださいませ!

それでは、また次回お会いしましょう


navigation

Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部