[自作日記2] CPUとチップセットと PCI Express の関係

[自作日記2] CPUとチップセットと PCI Express の関係

こんにちは!今日はCPUとチップセットについて学びたいとおもいます!

最終的にはAI開発に使えるGPUマシンをつくりたいのですが、GPUってパソコンのどのあたりに入れて使うものでしょうか。

black Gigabyte graphics card
Photo by Rafael Pol / Unsplash

はい、正解は、パソコンのPCI Express のスロットに挿して使います。

「知っとるわ」という声が聞こえました。

さすがです。

では、次の問いです。

GPU が挿さる PCI Express スロットのレーンはどこにつながってるのでしょうか?

1.「チップセット」
2.「CPU」

正解は2のCPUです。

この問いの答えが一瞬で出た方は、本記事を読みとばしていただいて問題ありません。

「?」となった方は、本記事に参考になる部分があるかもしれません。

ということで、GPU は PCI Express という拡張スロットに挿して使うことはご存じかもしれませんが、PCI Express は内部でどのようにつながっているのでしょうか。実はGPUパソコンを作るときにこの辺がけっこう重要になります。

今後、GPU2枚挿し、GPU4枚挿し、など本格的なGPUマシンを作るときにもこのあたりの知識が重要になりますので、学んでおいて損はないですね。

さあ、進めていきましょう!

先ほどの問いの続きから、ですが、
PCI Express には CPU と直接つながっているものと、チップセットからつながっているものの2種類があります。

まずはPCI Express から CPU やチップセットにつながっている伝送路= 「レーン」についてもう少しみていきましょう

PCI Express と CPU をつなぐレーン

前述のとおり、PCI Express は CPU から直接つながるものと、チップセットからつながるものがあります

  • PCI Express ⇔ CPU

  • PCI Express ⇔ チップセット

では、具体的に見ていきましょう。

CPUとPCI Express が接続されているレーンは、たとえば、 第12世代のインテル Core シリーズCPU の場合、CPUから直接PCI Express に
接続されるレーンは 20本 あります。

その内訳は、

  • PCIe gen 5 16レーン
  • PCIe gen 4 4レーン

となっています。

「gen5 のレーンが 16本ってこと? gen4 のレーンが 4本ってこと? CPUからPCIExpressにのびているレーンの本数と規格が違うの?」

はい、そのとおりです。

レーンには1本ずつ規格があり、このレーンは PCIe gen5(=PCI Express の5世代目 という意味でしたね) 、このレーンは PCIe gen4 のようにそれぞれ規格がわかれています。

パソコンの中でCPUやチップセットにつながってるPCI Expressのレーンは全てがおなじ規格ではない、というのがまずポイントです。

では、実際に インテルの12世代CPU に対応した Z690 チップセット というものの、ブロック図をみながら理解を深めていきましょう。

(ブロック図とは、システムの構成要素を図にしたものです。)

以下は Z690 チップセットのブロック図です。

このブロック図を全部ただちに理解する必要はありません。

私たちは 、ふつうのパソコンではなく、「GPU搭載マシン」を作るので、GPUマシンにとって必要なところを学びます。

GPUにとって重要なのはこのブロック図の左上です。赤で示しました。

まずは、ここを読み解いていきましょう。

拡大するとこんなかんじです。

これは、 CPU と直接接続されている PCI Express について説明しています。

この左上あたりをみると、

のように書いてあります。

これが冒頭にかいたとおり CPU から PCI Express のレーンが 20 本のびている 件です。 16本の PCIe 5.0 レーンと 4本の PCIe 4.0 レーンの合計 20本のレーンが CPU と直接接続されています。

つまり、 合計20本あるレーンのうち

・gen5 規格 のPCI Express のレーンを16本束にしたスロット
・gen4 規格 のPCI Express のレーンを4本束にしたスロット

が使えるよ。といっています。

そして、通常、CPU からのびてる、この gen5 規格 のPCI Express のレーンを16本束にしたスロットグラフィックボード(GPU) 用に使用されます!

PCIe 5.0 は前回の記事に示した通り、大変高速ですので、GPUのような高速データ転送を要求される用途向きというわけです。

PCI Express の世代と伝送速度(理論値)

理解をより深めるために、レーン1本ずつを視覚的に示してみました

GPUが主眼なので、GPU が接続される CPU ⇔ PCI Express に着目しましたが、基本的には、他のレーンも同じです。

PCI Express には、チップセット側と接続されているレーンもあり、上の図のようになっています。

この仕組みが理解できると、マザーボードやチップセットのスペックシートが読み解けるようになります。

さて、さきほどのブロック図の左上には↓という表記も書いてありました。これはどういうことでしょうか。

そちらは、次回にご説明いたします。
これはグラボ二枚挿しにも関係のある内容となっていますのでご期待くださいませ!

それでは、また次回お会いしましょう


navigation

Read more

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

1. 位置損失 (L_position) - 口の形の正確さ 時間 口の開き 正解 予測 L_position = Σᵢ wᵢ × ||y_pred - y_true||² 各時点での予測値と正解値の差を計算。重要なパラメータ(顎の開き、口の開き)には大きな重みを付けます。 jaw_open: ×2.0 mouth_open: ×2.0 その他: ×1.0 2. 速度損失 (L_velocity) - 動きの速さ 時間 速度 t→t+1 v = y[t] -

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング