[自作日記2] CPUとチップセットと PCI Express の関係

[自作日記2] CPUとチップセットと PCI Express の関係

こんにちは!今日はCPUとチップセットについて学びたいとおもいます!

最終的にはAI開発に使えるGPUマシンをつくりたいのですが、GPUってパソコンのどのあたりに入れて使うものでしょうか。

black Gigabyte graphics card
Photo by Rafael Pol / Unsplash

はい、正解は、パソコンのPCI Express のスロットに挿して使います。

「知っとるわ」という声が聞こえました。

さすがです。

では、次の問いです。

GPU が挿さる PCI Express スロットのレーンはどこにつながってるのでしょうか?

1.「チップセット」
2.「CPU」

正解は2のCPUです。

この問いの答えが一瞬で出た方は、本記事を読みとばしていただいて問題ありません。

「?」となった方は、本記事に参考になる部分があるかもしれません。

ということで、GPU は PCI Express という拡張スロットに挿して使うことはご存じかもしれませんが、PCI Express は内部でどのようにつながっているのでしょうか。実はGPUパソコンを作るときにこの辺がけっこう重要になります。

今後、GPU2枚挿し、GPU4枚挿し、など本格的なGPUマシンを作るときにもこのあたりの知識が重要になりますので、学んでおいて損はないですね。

さあ、進めていきましょう!

先ほどの問いの続きから、ですが、
PCI Express には CPU と直接つながっているものと、チップセットからつながっているものの2種類があります。

まずはPCI Express から CPU やチップセットにつながっている伝送路= 「レーン」についてもう少しみていきましょう

PCI Express と CPU をつなぐレーン

前述のとおり、PCI Express は CPU から直接つながるものと、チップセットからつながるものがあります

  • PCI Express ⇔ CPU

  • PCI Express ⇔ チップセット

では、具体的に見ていきましょう。

CPUとPCI Express が接続されているレーンは、たとえば、 第12世代のインテル Core シリーズCPU の場合、CPUから直接PCI Express に
接続されるレーンは 20本 あります。

その内訳は、

  • PCIe gen 5 16レーン
  • PCIe gen 4 4レーン

となっています。

「gen5 のレーンが 16本ってこと? gen4 のレーンが 4本ってこと? CPUからPCIExpressにのびているレーンの本数と規格が違うの?」

はい、そのとおりです。

レーンには1本ずつ規格があり、このレーンは PCIe gen5(=PCI Express の5世代目 という意味でしたね) 、このレーンは PCIe gen4 のようにそれぞれ規格がわかれています。

パソコンの中でCPUやチップセットにつながってるPCI Expressのレーンは全てがおなじ規格ではない、というのがまずポイントです。

では、実際に インテルの12世代CPU に対応した Z690 チップセット というものの、ブロック図をみながら理解を深めていきましょう。

(ブロック図とは、システムの構成要素を図にしたものです。)

以下は Z690 チップセットのブロック図です。

このブロック図を全部ただちに理解する必要はありません。

私たちは 、ふつうのパソコンではなく、「GPU搭載マシン」を作るので、GPUマシンにとって必要なところを学びます。

GPUにとって重要なのはこのブロック図の左上です。赤で示しました。

まずは、ここを読み解いていきましょう。

拡大するとこんなかんじです。

これは、 CPU と直接接続されている PCI Express について説明しています。

この左上あたりをみると、

のように書いてあります。

これが冒頭にかいたとおり CPU から PCI Express のレーンが 20 本のびている 件です。 16本の PCIe 5.0 レーンと 4本の PCIe 4.0 レーンの合計 20本のレーンが CPU と直接接続されています。

つまり、 合計20本あるレーンのうち

・gen5 規格 のPCI Express のレーンを16本束にしたスロット
・gen4 規格 のPCI Express のレーンを4本束にしたスロット

が使えるよ。といっています。

そして、通常、CPU からのびてる、この gen5 規格 のPCI Express のレーンを16本束にしたスロットグラフィックボード(GPU) 用に使用されます!

PCIe 5.0 は前回の記事に示した通り、大変高速ですので、GPUのような高速データ転送を要求される用途向きというわけです。

PCI Express の世代と伝送速度(理論値)

理解をより深めるために、レーン1本ずつを視覚的に示してみました

GPUが主眼なので、GPU が接続される CPU ⇔ PCI Express に着目しましたが、基本的には、他のレーンも同じです。

PCI Express には、チップセット側と接続されているレーンもあり、上の図のようになっています。

この仕組みが理解できると、マザーボードやチップセットのスペックシートが読み解けるようになります。

さて、さきほどのブロック図の左上には↓という表記も書いてありました。これはどういうことでしょうか。

そちらは、次回にご説明いたします。
これはグラボ二枚挿しにも関係のある内容となっていますのでご期待くださいませ!

それでは、また次回お会いしましょう


navigation

Read more

自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング