[自作日記4] いざ秋葉原! CPU選び

[自作日記4] いざ秋葉原! CPU選び

こんにちは、さっそく自作PCを作っていきましょう。

ここでは、Qualitegの若手社員 Jun さんにご登場いただき、GPUマシン自作体験記を赤裸々に語っていただくストーリーとして進めていきます!


Junです。ソフトウェアエンジニアです。

ある日、出社すると、席に1枚の封筒がおいてありました。

なんだこれ?

開いて見ると、中に便箋がはいっており、
今時手書きで、しかも太めのマッキーで、こんなことが書いてありました。

white printer paper on brown folder
Photo by Mediamodifier / Unsplash

Junさんへ、
Qualiteg へようこそ!

当社ではメンバーは必ず1台はGPUマシンを自作するのが掟(おきて)となっています。

そこの封筒に45万円ありますので、これをもって秋葉原に行ってパソコンのパーツを買ってきてください。
以下にヒントを書いておきますので、よろしくおねがいします。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

④ CPUメモリは 64GB 以上。DDR4でもDDR5でもどちらでもOK

⑤ グラボはコンシューマー向けでOKだけど、最上位モデルに近いもの。

⑥ SSD は 1T以上。

⑦ 電源は 800W 以上、 80Plus Titanium

⑧ ケースはグラボがちゃんと入ることを確認すること!

あとは、アキバに行けばなんとかなるとおもいます(^^♪


GPUマシン購入依頼の置手紙でした。

PCのパーツ選びも自作も久しぶりで、かつ、45万円ももっていくとなると、
正直不安でしたが、この置手紙をもって京浜東北線に乗り込みました。

 "JREast-Keihin-tohoku-line-JK27-Kanda-station-sign-20170824-182332.jpg from Wikimedia Commons by LERKCC-BY-SA 4.0


考えてみれば、オフィスは神田にあるので歩いてもアキバ行けるんですが、45万円を持ち歩く緊張感から、電車に飛び乗っていました。

そんなことを思っていたら、あっというまにアキバにつきました。

a city street filled with lots of tall buildings
Photo by Taewoo Kim / Unsplash

秋葉原はかつてはパソコン好きの聖地で今も非常に活気があって楽しいです。

ツクモさん、ドスパラさん、パソコン工房さん、自作PCの名だたる名店がそろっているのが秋葉原のすごいところです。そして、本当に店員さんが親切で知識も豊富です。自作PCを楽しむなら秋葉原一択だ!とみんなが言っている理由がわかります。

CPU を選ぶ

さて、さっそく、置手紙をみてCPUを購入することにしました。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

自作系のお店に入ると、たいていレジの近くなど目立つ場所にPCパーツの価格一覧表が印刷してあります。

また、現在の売れ筋モデルなんかが書いてあり、情報収集や価格比較にもとっても便利。

そこで、12世代のCPUと13世代のCPUのモデル名と価格をしげしげと観察していると店員さんが話しかけてきてくれました。

「何かおさがしですか?」

私「は、はい、実はAI用のパソコンを作ろうとおもってまして、そのCPUをさがしています。12世代か13世代で・・・」

「それでしたらこのへんですかねぇ。」

教えてくれたのは 13世代の Core i5 でした。

私「はい、計算のほうはGPUにさせるので、CPUはふつうくらいでいいので、そうですね、i5くらいかな。でももっと安いやつありますか?」

「もう少し安いとなると i3 もあります。」

私「i5とi3てi3のほうが性能が低いんですよね。」

「性能が低いと言えば低いのですが、影響がでてくるのはコア数、スレッド数の違いですね。コア数やスレッド数を多く使うソフトウェアのご利用を予定しているようでしたら、i3よりもi5,i5よりもi7のほうが適しているといえます。」

性能が低いという、エンジニアにあるまじき表現をつかってしまい恥ずかしかったですが店員さんの指摘は適切でした。

GPUしか使わないし、コア数とかそんなにいらないから、13世代のCore i3 でいいかなと思ったとき、あることを思い出しました。

そういえば、いまLLM (広い意味でディープラーニング系といえる)以外にも Kaggle の分類系問題やってるんだった。

私は、 Kaggle の練習もやっており、そこで XGBoost など、ディープラーニングではなく、どちらかというと古典機械学習系のアルゴにも挑戦していることを思い出しました。

ディープラーニングの推論だけなら、たしかに CPUは Core i3 でもなんとか動かせるかもしれませんが、 XGBoost のように、CPUコア数が多いほうが有利なアルゴもあるので、俄然コア数が気になり始めました。

そこでその視点で再度価格表をみると、 13世代の Core i5-1360012世代の Core i7 12700 の価格がかなり近いではありませんか。

ぱっとみの性能も近い。 13世代の i5-13600 (14-コア、20スレッド)と 1つ前の、12世代の i7 12700 (12コア、20スレッド)

うーん、どうしよう。

10分(体感では60分)悩んで、結局この段階ではCPUを決められませんでした

でも、CPUはこの2つに絞り込みました

13世代 i5 13600
12世代 i7 12700

価格はどちらも5万円程度でした


いきなり、CPU選び足踏みしてしまったJunさん、無事、すべてのパーツをそろえられるのでしょうか。

次回は、マザーボードの選定とCPUの決定です!お楽しみに!


navigation

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部