[自作日記4] いざ秋葉原! CPU選び

[自作日記4] いざ秋葉原! CPU選び

こんにちは、さっそく自作PCを作っていきましょう。

ここでは、Qualitegの若手社員 Jun さんにご登場いただき、GPUマシン自作体験記を赤裸々に語っていただくストーリーとして進めていきます!


Junです。ソフトウェアエンジニアです。

ある日、出社すると、席に1枚の封筒がおいてありました。

なんだこれ?

開いて見ると、中に便箋がはいっており、
今時手書きで、しかも太めのマッキーで、こんなことが書いてありました。

white printer paper on brown folder
Photo by Mediamodifier / Unsplash

Junさんへ、
Qualiteg へようこそ!

当社ではメンバーは必ず1台はGPUマシンを自作するのが掟(おきて)となっています。

そこの封筒に45万円ありますので、これをもって秋葉原に行ってパソコンのパーツを買ってきてください。
以下にヒントを書いておきますので、よろしくおねがいします。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

④ CPUメモリは 64GB 以上。DDR4でもDDR5でもどちらでもOK

⑤ グラボはコンシューマー向けでOKだけど、最上位モデルに近いもの。

⑥ SSD は 1T以上。

⑦ 電源は 800W 以上、 80Plus Titanium

⑧ ケースはグラボがちゃんと入ることを確認すること!

あとは、アキバに行けばなんとかなるとおもいます(^^♪


GPUマシン購入依頼の置手紙でした。

PCのパーツ選びも自作も久しぶりで、かつ、45万円ももっていくとなると、
正直不安でしたが、この置手紙をもって京浜東北線に乗り込みました。

 "JREast-Keihin-tohoku-line-JK27-Kanda-station-sign-20170824-182332.jpg from Wikimedia Commons by LERKCC-BY-SA 4.0


考えてみれば、オフィスは神田にあるので歩いてもアキバ行けるんですが、45万円を持ち歩く緊張感から、電車に飛び乗っていました。

そんなことを思っていたら、あっというまにアキバにつきました。

a city street filled with lots of tall buildings
Photo by Taewoo Kim / Unsplash

秋葉原はかつてはパソコン好きの聖地で今も非常に活気があって楽しいです。

ツクモさん、ドスパラさん、パソコン工房さん、自作PCの名だたる名店がそろっているのが秋葉原のすごいところです。そして、本当に店員さんが親切で知識も豊富です。自作PCを楽しむなら秋葉原一択だ!とみんなが言っている理由がわかります。

CPU を選ぶ

さて、さっそく、置手紙をみてCPUを購入することにしました。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

自作系のお店に入ると、たいていレジの近くなど目立つ場所にPCパーツの価格一覧表が印刷してあります。

また、現在の売れ筋モデルなんかが書いてあり、情報収集や価格比較にもとっても便利。

そこで、12世代のCPUと13世代のCPUのモデル名と価格をしげしげと観察していると店員さんが話しかけてきてくれました。

「何かおさがしですか?」

私「は、はい、実はAI用のパソコンを作ろうとおもってまして、そのCPUをさがしています。12世代か13世代で・・・」

「それでしたらこのへんですかねぇ。」

教えてくれたのは 13世代の Core i5 でした。

私「はい、計算のほうはGPUにさせるので、CPUはふつうくらいでいいので、そうですね、i5くらいかな。でももっと安いやつありますか?」

「もう少し安いとなると i3 もあります。」

私「i5とi3てi3のほうが性能が低いんですよね。」

「性能が低いと言えば低いのですが、影響がでてくるのはコア数、スレッド数の違いですね。コア数やスレッド数を多く使うソフトウェアのご利用を予定しているようでしたら、i3よりもi5,i5よりもi7のほうが適しているといえます。」

性能が低いという、エンジニアにあるまじき表現をつかってしまい恥ずかしかったですが店員さんの指摘は適切でした。

GPUしか使わないし、コア数とかそんなにいらないから、13世代のCore i3 でいいかなと思ったとき、あることを思い出しました。

そういえば、いまLLM (広い意味でディープラーニング系といえる)以外にも Kaggle の分類系問題やってるんだった。

私は、 Kaggle の練習もやっており、そこで XGBoost など、ディープラーニングではなく、どちらかというと古典機械学習系のアルゴにも挑戦していることを思い出しました。

ディープラーニングの推論だけなら、たしかに CPUは Core i3 でもなんとか動かせるかもしれませんが、 XGBoost のように、CPUコア数が多いほうが有利なアルゴもあるので、俄然コア数が気になり始めました。

そこでその視点で再度価格表をみると、 13世代の Core i5-1360012世代の Core i7 12700 の価格がかなり近いではありませんか。

ぱっとみの性能も近い。 13世代の i5-13600 (14-コア、20スレッド)と 1つ前の、12世代の i7 12700 (12コア、20スレッド)

うーん、どうしよう。

10分(体感では60分)悩んで、結局この段階ではCPUを決められませんでした

でも、CPUはこの2つに絞り込みました

13世代 i5 13600
12世代 i7 12700

価格はどちらも5万円程度でした


いきなり、CPU選び足踏みしてしまったJunさん、無事、すべてのパーツをそろえられるのでしょうか。

次回は、マザーボードの選定とCPUの決定です!お楽しみに!


navigation

Read more

その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは! 本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。 ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。 エラーメッセージの詳細 [E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load

By Qualiteg プロダクト開発部
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg コンサルティング
使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

こんにちは、株式会社Qualiteg コンサルティング部門です。 昨今、生成AIの急速な進化により、ソフトウェア開発の在り方が根本から変わりつつあります。2024年にはClaude、GPT-4、Geminiなどの大規模言語モデルがコード生成能力を飛躍的に向上させ、GitHub CopilotやCursor、Windsurf等の開発支援ツールが実際の開発現場で広く活用されるようになりました。さらに、Devin、OpenAI Canvas、Anthropic Claude Codingといった、より高度な自律的コーディング機能を持つAIエージェントも登場しています。 このような技術革新を背景に、当部門では今後のソフトウェア産業の構造変化について詳細な分析を行いました。本シリーズでは、特に注目すべき変化として、従来1000人月規模を要していた企業向けSaaSプラットフォームや、基幹システムが、AIエージェントを効果的に活用することで、わずか2-3名のチームが数日から数週間で実装可能になるという、開発生産性の劇的な向上について考察してまいります。 これは単なる効率化ではなく、ソフトウェア

By Qualiteg コンサルティング
NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部