[自作日記4] いざ秋葉原! CPU選び

[自作日記4] いざ秋葉原! CPU選び

こんにちは、さっそく自作PCを作っていきましょう。

ここでは、Qualitegの若手社員 Jun さんにご登場いただき、GPUマシン自作体験記を赤裸々に語っていただくストーリーとして進めていきます!


Junです。ソフトウェアエンジニアです。

ある日、出社すると、席に1枚の封筒がおいてありました。

なんだこれ?

開いて見ると、中に便箋がはいっており、
今時手書きで、しかも太めのマッキーで、こんなことが書いてありました。

white printer paper on brown folder
Photo by Mediamodifier / Unsplash

Junさんへ、
Qualiteg へようこそ!

当社ではメンバーは必ず1台はGPUマシンを自作するのが掟(おきて)となっています。

そこの封筒に45万円ありますので、これをもって秋葉原に行ってパソコンのパーツを買ってきてください。
以下にヒントを書いておきますので、よろしくおねがいします。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

④ CPUメモリは 64GB 以上。DDR4でもDDR5でもどちらでもOK

⑤ グラボはコンシューマー向けでOKだけど、最上位モデルに近いもの。

⑥ SSD は 1T以上。

⑦ 電源は 800W 以上、 80Plus Titanium

⑧ ケースはグラボがちゃんと入ることを確認すること!

あとは、アキバに行けばなんとかなるとおもいます(^^♪


GPUマシン購入依頼の置手紙でした。

PCのパーツ選びも自作も久しぶりで、かつ、45万円ももっていくとなると、
正直不安でしたが、この置手紙をもって京浜東北線に乗り込みました。

 "JREast-Keihin-tohoku-line-JK27-Kanda-station-sign-20170824-182332.jpg from Wikimedia Commons by LERKCC-BY-SA 4.0


考えてみれば、オフィスは神田にあるので歩いてもアキバ行けるんですが、45万円を持ち歩く緊張感から、電車に飛び乗っていました。

そんなことを思っていたら、あっというまにアキバにつきました。

a city street filled with lots of tall buildings
Photo by Taewoo Kim / Unsplash

秋葉原はかつてはパソコン好きの聖地で今も非常に活気があって楽しいです。

ツクモさん、ドスパラさん、パソコン工房さん、自作PCの名だたる名店がそろっているのが秋葉原のすごいところです。そして、本当に店員さんが親切で知識も豊富です。自作PCを楽しむなら秋葉原一択だ!とみんなが言っている理由がわかります。

CPU を選ぶ

さて、さっそく、置手紙をみてCPUを購入することにしました。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

自作系のお店に入ると、たいていレジの近くなど目立つ場所にPCパーツの価格一覧表が印刷してあります。

また、現在の売れ筋モデルなんかが書いてあり、情報収集や価格比較にもとっても便利。

そこで、12世代のCPUと13世代のCPUのモデル名と価格をしげしげと観察していると店員さんが話しかけてきてくれました。

「何かおさがしですか?」

私「は、はい、実はAI用のパソコンを作ろうとおもってまして、そのCPUをさがしています。12世代か13世代で・・・」

「それでしたらこのへんですかねぇ。」

教えてくれたのは 13世代の Core i5 でした。

私「はい、計算のほうはGPUにさせるので、CPUはふつうくらいでいいので、そうですね、i5くらいかな。でももっと安いやつありますか?」

「もう少し安いとなると i3 もあります。」

私「i5とi3てi3のほうが性能が低いんですよね。」

「性能が低いと言えば低いのですが、影響がでてくるのはコア数、スレッド数の違いですね。コア数やスレッド数を多く使うソフトウェアのご利用を予定しているようでしたら、i3よりもi5,i5よりもi7のほうが適しているといえます。」

性能が低いという、エンジニアにあるまじき表現をつかってしまい恥ずかしかったですが店員さんの指摘は適切でした。

GPUしか使わないし、コア数とかそんなにいらないから、13世代のCore i3 でいいかなと思ったとき、あることを思い出しました。

そういえば、いまLLM (広い意味でディープラーニング系といえる)以外にも Kaggle の分類系問題やってるんだった。

私は、 Kaggle の練習もやっており、そこで XGBoost など、ディープラーニングではなく、どちらかというと古典機械学習系のアルゴにも挑戦していることを思い出しました。

ディープラーニングの推論だけなら、たしかに CPUは Core i3 でもなんとか動かせるかもしれませんが、 XGBoost のように、CPUコア数が多いほうが有利なアルゴもあるので、俄然コア数が気になり始めました。

そこでその視点で再度価格表をみると、 13世代の Core i5-1360012世代の Core i7 12700 の価格がかなり近いではありませんか。

ぱっとみの性能も近い。 13世代の i5-13600 (14-コア、20スレッド)と 1つ前の、12世代の i7 12700 (12コア、20スレッド)

うーん、どうしよう。

10分(体感では60分)悩んで、結局この段階ではCPUを決められませんでした

でも、CPUはこの2つに絞り込みました

13世代 i5 13600
12世代 i7 12700

価格はどちらも5万円程度でした


いきなり、CPU選び足踏みしてしまったJunさん、無事、すべてのパーツをそろえられるのでしょうか。

次回は、マザーボードの選定とCPUの決定です!お楽しみに!


navigation

Read more

シェルスクリプトからcondaコマンドを活用したいとき

シェルスクリプトからcondaコマンドを活用したいとき

こんにちは! 今日はみんな大好きcondaコマンドについてです。 condaコマンドで仮想環境に入って、何らかの処理をして、戻ってくる ようなシェルスクリプト、バッチタスクをやるときのTipsです。 AI開発において、Anacondaとその中核であるcondaパッケージマネージャーはとっても重宝します。 しかし、シェルスクリプトから自動的にcondaを利用しようとすると、意外なハードルがあります。 本記事では、シェルスクリプトからcondaコマンドを正しく呼び出す方法について解説します。 condaと非対話モードの課題 AnacondaがインストールされているLinux環境において、condaコマンドは通常、.bashrcや.bash_profileなどの設定ファイルによって初期化されます。 なんとなくシェルをつかっていると、このcondaコマンドの初期化を忘れてしまいますが、これらの設定は多くの場合シェルの「対話モード」でのみ有効になるように設計されています。 ゆえにシェルスクリプトのような非対話モードでは、condaコマンドが正しく機能してくれません 例えば、.b

By Qualiteg プロダクト開発部
Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部