[自作日記4] いざ秋葉原! CPU選び

[自作日記4] いざ秋葉原! CPU選び

こんにちは、さっそく自作PCを作っていきましょう。

ここでは、Qualitegの若手社員 Jun さんにご登場いただき、GPUマシン自作体験記を赤裸々に語っていただくストーリーとして進めていきます!


Junです。ソフトウェアエンジニアです。

ある日、出社すると、席に1枚の封筒がおいてありました。

なんだこれ?

開いて見ると、中に便箋がはいっており、
今時手書きで、しかも太めのマッキーで、こんなことが書いてありました。

white printer paper on brown folder
Photo by Mediamodifier / Unsplash

Junさんへ、
Qualiteg へようこそ!

当社ではメンバーは必ず1台はGPUマシンを自作するのが掟(おきて)となっています。

そこの封筒に45万円ありますので、これをもって秋葉原に行ってパソコンのパーツを買ってきてください。
以下にヒントを書いておきますので、よろしくおねがいします。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

④ CPUメモリは 64GB 以上。DDR4でもDDR5でもどちらでもOK

⑤ グラボはコンシューマー向けでOKだけど、最上位モデルに近いもの。

⑥ SSD は 1T以上。

⑦ 電源は 800W 以上、 80Plus Titanium

⑧ ケースはグラボがちゃんと入ることを確認すること!

あとは、アキバに行けばなんとかなるとおもいます(^^♪


GPUマシン購入依頼の置手紙でした。

PCのパーツ選びも自作も久しぶりで、かつ、45万円ももっていくとなると、
正直不安でしたが、この置手紙をもって京浜東北線に乗り込みました。

 "JREast-Keihin-tohoku-line-JK27-Kanda-station-sign-20170824-182332.jpg from Wikimedia Commons by LERKCC-BY-SA 4.0


考えてみれば、オフィスは神田にあるので歩いてもアキバ行けるんですが、45万円を持ち歩く緊張感から、電車に飛び乗っていました。

そんなことを思っていたら、あっというまにアキバにつきました。

a city street filled with lots of tall buildings
Photo by Taewoo Kim / Unsplash

秋葉原はかつてはパソコン好きの聖地で今も非常に活気があって楽しいです。

ツクモさん、ドスパラさん、パソコン工房さん、自作PCの名だたる名店がそろっているのが秋葉原のすごいところです。そして、本当に店員さんが親切で知識も豊富です。自作PCを楽しむなら秋葉原一択だ!とみんなが言っている理由がわかります。

CPU を選ぶ

さて、さっそく、置手紙をみてCPUを購入することにしました。

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

自作系のお店に入ると、たいていレジの近くなど目立つ場所にPCパーツの価格一覧表が印刷してあります。

また、現在の売れ筋モデルなんかが書いてあり、情報収集や価格比較にもとっても便利。

そこで、12世代のCPUと13世代のCPUのモデル名と価格をしげしげと観察していると店員さんが話しかけてきてくれました。

「何かおさがしですか?」

私「は、はい、実はAI用のパソコンを作ろうとおもってまして、そのCPUをさがしています。12世代か13世代で・・・」

「それでしたらこのへんですかねぇ。」

教えてくれたのは 13世代の Core i5 でした。

私「はい、計算のほうはGPUにさせるので、CPUはふつうくらいでいいので、そうですね、i5くらいかな。でももっと安いやつありますか?」

「もう少し安いとなると i3 もあります。」

私「i5とi3てi3のほうが性能が低いんですよね。」

「性能が低いと言えば低いのですが、影響がでてくるのはコア数、スレッド数の違いですね。コア数やスレッド数を多く使うソフトウェアのご利用を予定しているようでしたら、i3よりもi5,i5よりもi7のほうが適しているといえます。」

性能が低いという、エンジニアにあるまじき表現をつかってしまい恥ずかしかったですが店員さんの指摘は適切でした。

GPUしか使わないし、コア数とかそんなにいらないから、13世代のCore i3 でいいかなと思ったとき、あることを思い出しました。

そういえば、いまLLM (広い意味でディープラーニング系といえる)以外にも Kaggle の分類系問題やってるんだった。

私は、 Kaggle の練習もやっており、そこで XGBoost など、ディープラーニングではなく、どちらかというと古典機械学習系のアルゴにも挑戦していることを思い出しました。

ディープラーニングの推論だけなら、たしかに CPUは Core i3 でもなんとか動かせるかもしれませんが、 XGBoost のように、CPUコア数が多いほうが有利なアルゴもあるので、俄然コア数が気になり始めました。

そこでその視点で再度価格表をみると、 13世代の Core i5-1360012世代の Core i7 12700 の価格がかなり近いではありませんか。

ぱっとみの性能も近い。 13世代の i5-13600 (14-コア、20スレッド)と 1つ前の、12世代の i7 12700 (12コア、20スレッド)

うーん、どうしよう。

10分(体感では60分)悩んで、結局この段階ではCPUを決められませんでした

でも、CPUはこの2つに絞り込みました

13世代 i5 13600
12世代 i7 12700

価格はどちらも5万円程度でした


いきなり、CPU選び足踏みしてしまったJunさん、無事、すべてのパーツをそろえられるのでしょうか。

次回は、マザーボードの選定とCPUの決定です!お楽しみに!


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部