[自作日記6] メモリ選定

[自作日記6] メモリ選定

今回は、メモリや周辺パーツを選定しましょう。

メモリ選定にも落とし穴があり、Junさんは見事落とし穴にハマってしまいました。さっそくみていきましょう。


ふー。やっとCPUとマザーボードが買えました。
あと何を買えばいいんだっけ。ということで、もう一度、先輩の置手紙をみてみます

① CPUは 12世代か13世代のどちらでもよい。

② GPU中心でつかうため、CPU側の能力は i5程度で問題ない。

③ マザーボードのチップセットは CPUが12世代ならZ690 か CPUが13世代ならZ790。ATX。

④ CPUメモリは 64GB 以上。DDR4でもDDR5でもどちらでもOK

⑤ グラボはコンシューマー向けでOKだけど、最上位モデルに近いもの。

⑥ SSD は 1T以上。

⑦ 電源は 800W 以上、 80Plus Titanium

⑧ ケースはグラボがちゃんと入ることを確認すること!

①~③までは無事かえましたので、あとはメモリ、グラボ、SSD、電源、ケースを買わないといけません。まだまだ、買い物ありますね。

おなかもすいてきたので、CPUメモリだけ購入したら、昼食を食べに行くことにして、メモリが売っている階に移動しました。

すると、さっそくよさげなメモリを発見!

なになに、crucial DDR4 3200 2 x 32GB と書いてあります。これじゃん!値段は2万円くらい。置手紙に書いてあったとおりの仕様のメモリを発見できました

念のためもう一度確認します

④ CPUメモリは 64GB 以上。DDR4でもDDR5でもどちらでもOK

ここにはDDR4でもDDR5でもどちらでもOKと書いてあるし、64GBあるし。

早速、購入手続きを済ませ、お昼ご飯を食べに行こうと店をでようとしたその時・・・

「お客様! お客様! お待ちください!」

私「え?」

「お待ちください~!」

私「え?(もしかして会計通さないで来ちゃったのか?!😨)」

振り返ると、そこには、さっきマザーボードについて相談にのってくれた店員さんが息を切らしながら追いかけてきました。

私「あ、あの、何でしょうか・・・」

「お客様、さきほど、メモリ販売コーナーで DDR4 をご購入されませんでしたか?」

私「は、はぁ、買いました。」

そういって、私は袋の中から、さきほど買ったメモリを見せました

「そのメモリ、お客様のマザーボードに対応してません!」

私「えええ?」

「お客様がご購入されたマザーボードをもう一度確認させてください」

マザーボードの仕様を確認すると、「DDR5 6000MHz 」と書いてありました。

私「あ」

実は現在主流のメモリには DDR4 と DDR5 がありますが、両者は完全に別物でした。

私は、メモにはDDR4かDDR5を買えばいいと書いてあったのでどちらでもよいとおもい無意識にDDR4を買っていましたが、マザーボードごとに決まったものを買わないといけなかのでした。

メモリーはマザーボードが DDR5 対応なのかDDR4対応なのか確認すべし

でした。店員さんが気づいてくれなければ、あやうく、間違ったメモリを入手てしまうところでした。間違ってかったDDR4をDDR5に交換してもらい事なきを得ました。

バタバタして、おなかの減り具合もピークだったので、肉の万世本店に駆け込みました。

Credit: by chime CC-BY-2.0

いかがでしたでしょうか。

今回は、マザーボードには、対応したメモリがあるということが学びでしたね。

次回は、いよいよグラフィックボード(GPU)の選定です!お楽しみに!

コラム:マザーボードとメモリ互換性

少しだけメモリについて補足しておきましょう

今回なマザーボードの仕様書には「DDR5 6000MHz」と書いてありました。この場合、そのマザーボードはDDR5 6000MHzのメモリーをサポートしているということですが、それ以下の速度のDDR5メモリー、例えばDDR5 4800MHzを装着した場合はどうなるのでしょうか。

その場合も基本的には使用可能です。ただし、使用するメモリーの速度がマザーボードのサポートする速度より低い場合、システムはそのメモリーの速度に合わせて動作します。

逆に、DDR5 6000MHzよりも速いメモリーをを装着したらどうなるでしょうか。

そちらも、基本的に問題ありませんが、いくつかの点に注意する必要があります。メモリーがマザーボードでサポートされている最大速度よりも速い場合、メモリーはマザーボードの最大サポート速度まで自動的にダウンクロックされて動作します。つまり、例えばDDR5 6400MHzのメモリーを使っても、マザーボードが6000MHzまでしか対応していない場合は、6000MHzで動作することになります。

さらに高速なメモリーを利用するメリットは制限されるかもしれませんが、将来的にマザーボードをアップグレードする予定がある場合には、高速なメモリーを購入することで、新しいマザーボードでその速度をフルに活用できる可能性があります。

ただし、どちらの場合も、メモリーの互換性については、マザーボードの製品仕様書や公式サイトで確認するのが最も確実です。メモリーが正しく機能するかどうかは、マザーボードのチップセットやBIOSの設定にも依存するため、公式の情報を参照することがオススメです。


navigation

Read more

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部