[自作日記7] AI用GPUの選定

[自作日記7] AI用GPUの選定

今回は、AIに適したグラフィックボード(GPU)の選定をします。

本編に行く前に、グラフィックボードとGPUの違いについて整理しておきましょう

グラフィックボードは、コンピューターで画像処理やAIの計算を担当する重要なハードウェアで パソコンのPCI Express のスロットに挿入して使用するのが一般的です。

一方 GPU はグラフィックボードの主要な構成要素の1つで、グラフィックボードは以下のようなコンポーネントで構成されています。

  1. GPUチップ - グラフィック処理の中心で、複雑な数学的計算を高速に実行します。
  2. VRAM(ビデオRAM) - GPUが直接アクセスする専用メモリで、ディープラーニングでは、パラメータ(重みやバイアス)や計算過程を保持する役割があり非常に高速に動作します。
  3. 冷却システム - GPUが生成する熱を効果的に放散するためのファンやヒートシンク。

グラフィックボードとGPUを同一視して書いている記事も多く、私たちもあまり厳密に分けて書いていないですが、実体としては↑のような感じですね。

さて、それでは Jun さんの買い物の続きをみていきましょう。


肉の万世本店はやっぱり最高でした。

2階でハンバーグを食べてきましたが、出世したら3階、4階のレストランも行ってみたい。あと、1階のパーコー麵にもチャレンジしてみたいです。麵が上下してるあのオブジェ?も楽しいですね。
(なぜか、いつも2階ばかり行ってしまうんですよね。)

おなかもいっぱいになったので、これから今日の目玉のGPUを買いに行きたいと思います。

とその前に、今まで買ったものを整理しておきます

だいたい12.5万円を使ったので、のこり32.5万円くらいあります。GPUは良いものを買えそうです!

GPUを買いにお店へ!

AIをやるなら、間違いなく NVIDIA の GPU です。

どれにしようかなー、と探し始めましたが、拍子抜けするくらい簡単に決まりました。

その理由は簡単。

ディープラーニング、とりわけLLMをやる場合に一番重要なのは VRAM の量つまりGPUのメモリ容量です。

そして、ここ秋葉原で売っているGPUは通常コンシューマー向けのGPUなので、VRAMの上限は決まっています。

そうです、 NVIDIA の GeForce 3090 か GeForce 4090 を搭載したグラフィックボードが VRAM 24 GBytes で最大なのです。つまりこのどちらかしか選択肢にないといってもいいでしょう。

この下のモデルになるといきなり VRAM が 16GBytes になってしまいます。

もともと、コンシューマ向けGPUというのは、3Dゲーム用途がほとんどであるため、24GBytes もVRAMがあれば十分ということなのでしょう。

ということで、もう3090か4090のどちらかで決めることにしました。

さて、この2つからの選択もほぼ迷いませんでした。

なぜなら、残りの資金が30万円弱だったのですが、4090のほうはのきなみ30万円以上の価格設定。残り資金を全部つかってしまったら電源など残りのパーツが買えません。

ということで、コンシューマ向けでメモリが一番多く、お値段も手が出るものという現実的な条件で、 GeForce 3090 搭載の以下のグラフィックボードを購入しました。

MSI SUPRIM X GeForce RTX 3090 Ti

約20万円で購入しました。今日一番高い買い物です。

買い出し用にコストコの巨大袋をもってきましたが、マザーボードの箱とグラボの箱ですでに、だいぶキツキツです。

三ツ矢サイダーの缶とくらべてわかるとおり箱がかなりでかく、高価なモノを買った感があります。

袋にはいってるのは、ざっとこんなかんじ。

コストコの袋に入ってるもの

胃袋に入ってるもの

万世コンボ+和食セット 約2千円

残金は 45-12.5-20 = 12.5 万円です。

いったん荷物を置きに会社に戻り、
残金で、残りのパーツである 電源、SSD、ケース を購入したいとおもいます。


今回はいかがでしたでしょうか。Jun さんは無事GPUをゲットできました。

次回は電源、SSD、ケースの購入をする予定です!お楽しみに!


navigation

Read more

その処理、GPUじゃなくて勝手にCPUで実行されてるかも  ~ONNX RuntimeのcuDNN 警告と対策~

その処理、GPUじゃなくて勝手にCPUで実行されてるかも ~ONNX RuntimeのcuDNN 警告と対策~

こんにちは! 本日は、ONNX RuntimeでGPU推論時の「libcudnn.so.9: cannot open shared object file」エラーの解決方法についての内容となります。 ONNX Runtimeを使用してGPU推論を行う際、CUDAプロバイダの初期化エラーに遭遇することがありますので、このエラーの原因と解決方法を解説いたします。 エラーメッセージの詳細 [E:onnxruntime:Default, provider_bridge_ort.cc:2195 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1778 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load

By Qualiteg プロダクト開発部
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg コンサルティング
使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

使い捨てソフトウェア時代の幕開け ― 市場構造の根本的変革と日本企業

こんにちは、株式会社Qualiteg コンサルティング部門です。 昨今、生成AIの急速な進化により、ソフトウェア開発の在り方が根本から変わりつつあります。2024年にはClaude、GPT-4、Geminiなどの大規模言語モデルがコード生成能力を飛躍的に向上させ、GitHub CopilotやCursor、Windsurf等の開発支援ツールが実際の開発現場で広く活用されるようになりました。さらに、Devin、OpenAI Canvas、Anthropic Claude Codingといった、より高度な自律的コーディング機能を持つAIエージェントも登場しています。 このような技術革新を背景に、当部門では今後のソフトウェア産業の構造変化について詳細な分析を行いました。本シリーズでは、特に注目すべき変化として、従来1000人月規模を要していた企業向けSaaSプラットフォームや、基幹システムが、AIエージェントを効果的に活用することで、わずか2-3名のチームが数日から数週間で実装可能になるという、開発生産性の劇的な向上について考察してまいります。 これは単なる効率化ではなく、ソフトウェア

By Qualiteg コンサルティング
NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部