[自作日記8] 電源、SSD、ケースは?

[自作日記8] 電源、SSD、ケースは?

今日は電源、SSD、ケースの購入です!


Junです。
残りは電源とSSD、ケースをゲットすれば一通り揃いそうです。

また、置手紙をみてみます。

⑥ SSD は 1T以上。

⑦ 電源は 800W 以上、 80Plus Titanium

⑧ ケースはグラボがちゃんと入ることを確認すること!

SSDの選定

SSDは、1T以上ということで、 3万円の SAMSUNG 980 PRO 2T を購入。

電源の選定

電源装置は 800W 以上ということで 850W OWLTECH PC電源 850W /ATX /Titanium PRIMETX850S を 4.5万円で購入しました。

ケースの選定

さて、残るはケースです。

⑧ ケースはグラボがちゃんと入ることを確認すること!

この意味がよくわからなかったので、店員さんに相談することにしました。

今回は ATX サイズのケースを購入する予定ですが、 ATX サイズといっても色々な大きさがあり、グラボのサイズが大きい場合、最悪ケースにおさまらないことがあるそうです。

なるほど、てきとうにケースを選ぶと痛い目にあうということですね。

今回かったグラボ GeForce RTX 3090 Ti SUPRIM X 24G のサイズは巨大で 338 x 140 x 71 mm です。フルサイズの PCI Express ボードが 31 cmなので、このグラボはフルサイズ超えの34cm サイズです。

たしかに、この巨大グラボが格納できるケースは注意深く探す必要がありそうです。

そこでよさげなケースをみつけました。


Fractal Design Focus G White Window というケースです。

このケースは 38cm までの グラボをサポートしており、私の買った GeForce RTX 3090 Ti SUPRIM X 24G の34cm というサイズでも余裕を持って入りそうです。
ちなみに、 GeForce RTX 3090 Ti SUPRIM X 24G は厚みもすごく 4スロット分あります。

つまり、PCI Express 4スロット分を占有するので、占有された場所にあった PCI Express スロットは使用不能になります。
(4スロットも占有するデカいグラボは許せん!と思う方は、コラム:コンシューマ用GPUとプロ用GPUの違い で解説した、内排気型のグラボをご検討されるとよいかなとおもいます。ブロワーファン搭載内排気型グラボはハイエンドのもので専有面積が2スロット以下のものがおおいです。そのかわり高価です)

そうそう、Fractal Design Focus G White Windowは見た目もかっこよく、パーツの居住空間も確保されているだけでなく、6基のファンや水冷ラジエーター取り付けにも対応しており、それでいてなんと約1万円で入手できました!これは間違いなくいい買い物だとおもいました。

実はこのケースを選定した理由はもう1つあります。それは5インチベイがついていることです。なぜ5インチベイがついていることが重要かといいますと、3分後にわかります。


さて、これで一通り、揃いました!

合計でちょうど40.5万円! 半分はグラボの値段です!

さて、もう少し買い物をしようと思います。

え?もう40万円使ったじゃん?

とおもわれるかもしれませんが、そうなんです。会社が出してくれる費用はあと4.5万円あり、実はやりたいことがあり、もう少しだけ買い物をします。

やりたいことというのはデュアルブートです。

というのも、研究用のGPUマシンのOSは Linux (Ubuntu)なのですが、ドキュメンテーションなどでは、 Microsoft Office を使いたい私としてはウィンドウズも入れたいと思っており、このGPUマシンを AI研究+日常業務機としてもつかおうという野望があります。

そこで、あと1万円だけ使って、デュアルブート環境を整えたいとおもいます。
追加で以下を購入しました

実はさっきケースの選定で5インチベイがついている、というのが重要だったのおは、このリムーバルケースを入れたい為でした。

これで全部そろいました!


ついに Jun さんは、すべてのパーツを購入することができました。

SSDについて1つ補足しておきますと、
最近のマザーボードには M.2という小さなスロットがついています。過去PCの自作をしたことのある方なら SATA ケーブルをSSDに挿して使うということをやっていた方もいるかもしれませんが、最近は M.2 というスロットが主流です。それは以前のHDDのように記録媒体が大きくなく、マザーボードの表面に直接装備できるほどに小さくなったからです。


また M.2 には SATA 接続のものと MVNe 接続のものがあります。端子の形は M.2 ですが、 NVMe は通信速度が飛躍的に向上しており、今回 Jun が購入した SSD も NVMe 対応ですのでSATAとは比べ物にならないほど高速なアクセスをすることができます。このように SSD を M.2 NVMe にすることで小型かつ高速なストレージを追加することができますが、一般的に高額になります。


Junさんは、無邪気に2Tの M.2 NVMe を購入していましたが、コストが気になる場合は通常のSATA SSD を購入する手もあります。 Jun さんが追加購入された SSD は通常の SATA SSD 512GB ですが、こちらは5000円程度で購入できるものとなっており、もし速度を妥協できれば SATA SSD のみの構成にすれば数万円コストダウンすることも可能と思われます。

それでは、また、次回おあいしましょう!


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部