[自作日記11] マザーボードとケースの配線をする

[自作日記11] マザーボードとケースの配線をする

今回は、マザーボードをケースに装着し各種配線を行っていきます!

1. スペーサーネジをはめる

ケースにはスペーサーネジというものが付属しています。これをケースにハメていきます。スペーサーはマザーボードを ”浮かせた” 状態で固定するためのものです。

スペーサネジ

このスペーサーをケースにあいたネジ穴にはめていきます。ケースにはネジ穴があらかじめあいており、ネジ穴にはヒントが書いてあります。

今回のケースには ATX と Mini ATX のフォームファクタのマザーボードに対応しており、ネジ穴は、どのフォームファクタ向けのネジ穴なのかがヒントとして書いてあります。

フォームファクタとは

PCケースのサイズや形状の規格を指し、主にマザーボードとの互換性に基づいて定義されます。主なフォームファクタには以下のようなものがあります:

  1. ATX:
    • 標準ATXは、最も一般的なフォームファクタで、多くの拡張スロットと豊富な接続ポートを備えています。サイズはおおよそ30.5cm x 24.4cmです。
    • Micro-ATX(マイクロATX)は、標準ATXよりも小さく、サイズは約24.4cm x 24.4cm。拡張スロットが少ないが、よりコンパクトなPCを構築する際に選ばれます。
    • Mini-ATXはさらに小さいフォームファクタで、非常に限られたスペースに適しています。
  2. Mini-ITX:
    • サイズは約17cm x 17cmで、非常に小型のPCケースに収まる設計です。省スペースのPCやメディアセンター、小型サーバーなどに適しています。
  3. E-ATX(拡張ATX):
    • 標準ATXよりも大きく、主に高性能なワークステーションやゲーム用PCに使われることが多いです。サイズが大きいため、より多くの拡張カードやその他のコンポーネントを収容することができます。

今回のPCケースは ATX フォームファクタですが、 それより小さなMini ATX のマザーボードもつけられるというわけです。

そのため、ATX 用のネジ穴と、Mini ATX 用のネジ穴が開いています。

今回のマザーボードは ATX 用なので、 ATX 用のネジ穴にスペーサネジを取り付けます。

ちなみに、万が一スペーサネジをとりつけずに、マザーボードをPCケースに直置きしまうと、漏電して、大変なことになりますので、絶対にスペーサネジをわすれないようにしましょう。

2.マザーボードをケース内に置く

スペーサを付けたら、マザーボードをケース内にそっと配置します

マザーボード上にあるネジ穴といましがたとりつけたスペーサーが同じ位置にくるように調整しておきます

付属のネジをつかってマザーボードを固定します

この付属ネジはころがって紛失しやすいので、きをつけましょう。

ちなみに、当社にはPC組立修理部屋があり、無くしやすいパーツ類は常に予備を在庫しています。ネジ類はそんなに比較的安価に手に入るので、予備は手元においておくと便利かもしれません。

自作マシン用ネジたち

3.マザーボードとケースの結線

マザーボードと結線されるのは周辺パーツだけではありません。

PCケースには、フロントパネルに電源スイッチ、USB端子、オーディオ端子などが設置されており、それらとマザーボードを結線する必要があります。

3-1 電源ボタン、リセットボタンなどを結線

ケース側から伸びたケースフロントパネルの電源ボタン一式ケーブルをマザーボードに接続します。

マザーボードのこのあたりが、フロントパネルの電源ボタン一式ケーブルを接続するジャンパーピンのありかです。



マニュアルをみてピンレイアウトを確認します。

このピン配置だけみても、ピンとこないかもしれませんので、以下補足してみました

これを参考にして、PCケースの電源系ケーブルをマザーボードに挿していきましょう。少し細かい作業となります。

こんな感じで、マザーボード側にある電源用ジャンパーピンにPCケースからのびたフロントパネル電源コネクタを接続します。

さっきのピンレイアウトをちょうど逆からみたような形です。

反対側もこのように装着しました

3-2 USB3ケーブルの接続

次に、PCケース側からのびたUSB3ケーブルをマザーボードに接続します


3-3 USB2 ケーブルの接続

同様に、ケース側からのびた USB2ケーブルをマザーボードに接続します

3-4 SATAケーブルを挿す

5インチベイに入れたSATAリムーバルケースから伸びたSATAケーブルを、マザーボードのSATAコネクタに挿します。ここでは SATA A というコネクタに挿しました。たいていは、マザーボード上に表記されていて便利です。

3-5 オーディオケーブルを挿す

ケース背面からのびているオーディオケーブルをひっぱりだし

マザーボードのHD AUDIO1 に挿します。

オーディオケーブルまで接続できたので、PCケースのフロントパネル用のケーブルはこれでぜんぶ結線できました!

次回はグラフィックボードを設置します!


navigation

Read more

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部