LLMサンプリングにおける3つのペナルティ

LLMサンプリングにおける3つのペナルティ
Photo by Ivan Torres / Unsplash

こんにちは!(株)Qualiteg プロダクト開発部です!

今日の昼食はみんなでイタリアンレストランに行きました。3種のチーズピザが好評でした。

さて、本日はLLMにおける3種のチーズならぬ、3種のペナルティをご紹介します。

ChatStreamでは、ペナルティを含む、多彩なプリセットサンプリングアルゴリズムを搭載しています。モデルや目的にあったサンプリングを行うことで、より自然な応答生成を行うことができます。

テキスト生成におけるペナルティの役割

自然言語処理(NLP)、LLMの世界で重要な概念の一つである「ペナルティ」とは何でしょうか。

ペナルティとは?

ペナルティとは、LLMがテキストを生成する際に特定のトークン(単語や文字列)の出現を調整するために使用される仕組みのことです。

テキスト生成モデルが自然で多様な文章を作り出すためには、同じ単語やフレーズが何度も繰り返されるのを防ぐ必要があります。そこで登場するのが、ペナルティです。

LLMが同じような文章、単語を何度も生成してしまうことはわりと頻繁に起こりますので、適切なペナルティを設定します。

ペナルティの種類

テキスト生成におけるペナルティにはいくつかの種類がありますが、今回は特に重要な3つのペナルティについて説明します。

  • Repetition Penalty:
    • 範囲: 繰り返し出現するすべてのトークンやフレーズ。
    • ペナルティ基準: すべての過去のトークンに基づく。
    • 使用例: 過去に生成されたトークンすべてに対して、ペナルティを適用。
  • Frequency Penalty:
    • 範囲: 特定のトークンの出現頻度。
    • ペナルティ基準: 各トークンの出現回数に基づく。
    • 使用例: 生成中に特定のトークンが何回生成されたかを追跡し、その頻度に基づいてペナルティを適用。
  • Presence Penalty:
    • 範囲: 一度でも生成されたトークン。
    • ペナルティ基準: トークンが一度でも生成されたかどうかに基づく。
    • 使用例: すでに生成されたトークンに対して、再出現時にペナルティを適用。

ペナルティの実装

では、実際にペナルティを実装していきましょう。

ChatStream のサンプリングクラスとしてペナルティを実装する

サンプリングクラスは AbstractLogitsProcessor をオーバーライドします。

from chatstream.token_samplers.logits_processor import AbstractLogitsProcessor

AbstractLogitsProcessorはシンプルな抽象クラスで、以下のようになっています。


from abc import ABC, abstractmethod


class AbstractLogitsProcessor(ABC):
    @abstractmethod
    def process(self, logits, params):
        pass

    @abstractmethod
    def get_name(self):
        pass

Repetition Penalty

さっそく、Repetition Penalty を実装してみましょう。

計算手法として乗算型と減算型の二種類を指定できるようにしており、あるトークンがすでに生成された場合、そのトークンのログ確率をペナルティ値で割る(乗算)か、ペナルティ値を引く(減算)というオペレーションを実装していますい。すべての過去のトークンが対象となります。

from chatstream.token_samplers.logits_processor import AbstractLogitsProcessor


class RepetitionPenaltyProcessor(AbstractLogitsProcessor):
    """
    繰り返しのトークンに対してペナルティを適用するプロセッサ。

    このクラスは、過去に使用されたトークンのlogitsを調整することで、繰り返しの出現を抑制する。
    ペナルティの適用方法は、乗算または減算のいずれかで、パラメータで指定できる。

    乗算ペナルティ計算の基本は logits[token_id] /= penalty で、過去に出現した token_id のロジット値を減らしていき
    出現確率を下げることで繰り返し同じトークンが出力されることを抑制する

    """

    def __init__(self):
        pass

    def process(self, logits, params):

        past_tokens = params.get("past_tokens", None)
        penalty = params.get("penalty", None)
        penalty_method = params.get("penalty_method", "multiplicative")

        # 過去のトークンのlogitsにペナルティを適用
        if penalty is not None and past_tokens is not None:
            # logitsのコピーを作成(引数として渡されたlogitsの非破壊保証)
            adjusted_logits = logits.clone()
            # penaltyの値の型を確認する
            if not isinstance(penalty, (int, float)):
                raise ValueError(f"penalty should be a scalar value, but got {penalty}({type(penalty)})")

            # ペナルティの適用方法に応じてlogitsを更新する
            if penalty_method == "multiplicative":
                if penalty != 1.0:
                    for token_id in set(past_tokens):
                        adjusted_logits[token_id] /= penalty

            elif penalty_method == "subtractive":
                for token_id in set(past_tokens):
                    adjusted_logits[token_id] -= penalty
            else:
                raise ValueError(f"Unknown penalty_method: {penalty_method}")
        else:
            adjusted_logits=logits

        return {"name": "RepetitionPenaltyProcessor", "type": "logits", "logits": adjusted_logits}


    def get_name(self):
        return "rep_penalty"

Frequency Penalty

Frequency Penaltyは以下のようになります。

トークンが出現するたびに、各トークンの出現回数に基づきそのトークンのログ確率をペナルティ値で累積的に割る(乗算)か、ペナルティ値を累積的に引く(減算)というオペレーションを実装しています。

class FrequencyPenaltyProcessor(AbstractLogitsProcessor):
    """
    生成されたトークンの出現頻度に基づいてペナルティを適用するプロセッサ。

    このクラスは、生成中に各トークンが出現した回数を追跡し、頻繁に出現するトークンにペナルティを適用する。
    ペナルティの適用方法は乗算または減算のいずれかで、パラメータで指定できる。
    """

    def __init__(self):
        self.token_counts = {}

    def process(self, logits, params):
        penalty = params.get("penalty", None)
        penalty_method = params.get("penalty_method", "multiplicative")

        # logitsのコピーを作成
        adjusted_logits = logits.clone()

        if penalty is not None:
            if not isinstance(penalty, (int, float)):
                raise ValueError(f"penalty should be a scalar value, but got {penalty}({type(penalty)})")

            for token_id, count in self.token_counts.items():
                if penalty_method == "multiplicative":
                    adjusted_logits[token_id] /= (penalty ** count)
                elif penalty_method == "subtractive":
                    adjusted_logits[token_id] -= (penalty * count)
                else:
                    raise ValueError(f"Unknown penalty_method: {penalty_method}")

        return {"name": "FrequencyPenaltyProcessor", "type": "logits", "logits": adjusted_logits}

    def update_token_counts(self, token_ids):
        for token_id in token_ids:
            if token_id in self.token_counts:
                self.token_counts[token_id] += 1
            else:
                self.token_counts[token_id] = 1

    def get_name(self):
        return "freq_penalty"

Presence Penalty

Presence Penalty は以下のようになります。

トークンが一度でも生成されたかどうかに基づき一度生成されたトークンのログ確率をペナルティ値で割る(乗算)か、ペナルティ値を引く(減算)というオペレーションを実装しています。

class PresencePenaltyProcessor(AbstractLogitsProcessor):
    """
    生成されたトークンの存在に基づいてペナルティを適用するプロセッサ。

    このクラスは、特定のトークンがすでに出現しているかどうかを追跡し、存在するトークンにペナルティを適用する。
    ペナルティの適用方法は乗算または減算のいずれかで、パラメータで指定できる。
    """

    def __init__(self):
        self.seen_tokens = set()

    def process(self, logits, params):
        penalty = params.get("penalty", None)
        penalty_method = params.get("penalty_method", "multiplicative")

        # logitsのコピーを作成
        adjusted_logits = logits.clone()

        if penalty is not None:
            if not isinstance(penalty, (int, float)):
                raise ValueError(f"penalty should be a scalar value, but got {penalty}({type(penalty)})")

            for token_id in self.seen_tokens:
                if penalty_method == "multiplicative":
                    adjusted_logits[token_id] /= penalty
                elif penalty_method == "subtractive":
                    adjusted_logits[token_id] -= penalty
                else:
                    raise ValueError(f"Unknown penalty_method: {penalty_method}")

        return {"name": "PresencePenaltyProcessor", "type": "logits", "logits": adjusted_logits}

    def update_seen_tokens(self, token_ids):
        self.seen_tokens.update(token_ids)

    def get_name(self):
        return "presence_penalty"

他のサンプリングパラメータとペナルティ

さて、他のサンプリングパラメータとの関係についてもみておきましょう。

まず、上のように実装したペナルティのおさらいですが、

ペナルティ

  1. Repetition Penalty: 特定のトークンやフレーズの繰り返しを防ぎます。
  2. Frequency Penalty: 生成されたトークンの出現頻度に基づいてペナルティを適用し、頻繁に出現するトークンを抑制します。
  3. Presence Penalty: 一度生成されたトークンが再度出現するのを防ぎます。

Top-k, Top-p, Temperature

次は、この3つです。また3種ですね。

この3つは特によく登場するサンプリング手法です。

top-ktop-p、および temperature は生成されるテキストの質と多様性を制御するためのパラメータです。簡単に説明すると、

Top-k

目的: 最も確率の高い k 個のトークンだけを考慮します。

  • 方法: 確率の高い k 個のトークンを選び、その中から次のトークンをランダムに選択します。
  • 計算方法:
    1. トークンの確率を降順に並べ替えます。
    2. 上位 k 個のトークンを選びます。
    3. その中から次のトークンを選択します。

Top-p (または Nucleus Sampling)

目的: トークンの累積確率が p(例:0.9)となるまでトークンを選択します。

  • 方法: 確率の高いトークンを累積確率が p になるまで選び、その中から次のトークンをランダムに選択します。
  • 計算方法:
    1. トークンの確率を降順に並べ替えます。
    2. 確率の累積和が p を超えるまでトークンを選びます。
    3. その中から次のトークンを選択します。

Temperature

目的: 生成されるテキストのランダム性を制御します。

  • 方法: temperature を用いてトークンの確率分布を調整します。
  • 計算方法:
    1. 各トークンのログ確率を temperature で割ります。
    2. これにより、確率分布がスムーズになります(高温度:分布が平坦に、低温度:分布が尖ります)。

ペナルティと top_k,top_p,temperatureの計算シナリオ

たとえば、Qualiteg May Change the World with ChatStream というテキスト生成を行うシナリオで考えてみましょう。

ペナルティとTop-k, Top-p, Temperatureの相互作用

Qualiteg May Change the World with ChatStreamという文章生成において、どのようにペナルティが適用され、top-ktop-ptemperature とどのように連携するか以下にをみていきます。

1. ペナルティの適用

  • ペナルティの適用:
    • Repetition Penalty、Frequency Penalty、Presence Penalty が適用され、特定のトークンのログ確率が調整されます。
    • 例えば、「Qualiteg」という単語がすでに何度か出現している場合、その単語のログ確率が低くなります。

2. Temperatureの適用

  • Temperatureの適用:
    • 調整されたログ確率は temperature によってさらにスケールされます。
    • これにより、分布の形状が変わり、生成されるトークンのランダム性が増減します。
    • 高温度(例:1.2)の場合、分布が平坦になり、ランダム性が増します。
    • 低温度(例:0.7)の場合、分布が尖り、最も高い確率のトークンが選ばれやすくなります。

3. Top-kの適用

  • Top-kの適用:
    • top-k が適用され、上位 k 個のトークンのみが選択肢として残ります。
    • これにより、最も確率の高いトークンの中から次のトークンが選ばれます。
    • 低確率のトークンが除外され、生成されるテキストの質が高まります。

4. Top-pの適用

  • Top-pの適用:
    • top-p が適用され、累積確率が p を超えるまでトークンが選択されます。
    • これにより、確率の高いトークンの中から次のトークンがランダムに選ばれます。
    • こちらも低確率のトークンを除外し、生成されるテキストの質が高まります。

サンプリング計算の具体例

例えば、以下のような設定のとき、どのように計算されていくかを具体的にみていきましょう

  • 設定:

    • Repetition Penalty: 1.2
    • Frequency Penalty: 0.8
    • Presence Penalty: 1.5
    • Temperature: 0.7
    • Top-k: 50
    • Top-p: 0.9
  • ステップ 1: 初期のログ確率の計算
    まず、モデルが各トークンの初期のログ確率(logits)を計算します。例えば、以下のような初期ログ確率が得られたとします:

["Qualiteg": 2.0, "May": 1.5, "Change": 1.0, "the": 0.5, "World": 0.3, "with": 0.2, "ChatStream": 0.1]
  • ステップ 2: ペナルティの適用
    次に、各ペナルティを適用します。以下の例では、すでに「Qualiteg」が1回出現しており、他のトークンは初めて出現するものとします。

    • Repetition Penalty: 「Qualiteg」がすでに出現しているため、logits["Qualiteg"] に 1.2 のペナルティを適用します。
    logits["Qualiteg"] /= 1.2
    2.0 / 1.2 ≈ 1.67
    
    • Frequency Penalty: 出現頻度に基づくペナルティを適用します。「Qualiteg」は1回出現しているため、頻度ペナルティを適用します。
    logits["Qualiteg"] *= 0.8
    1.67 * 0.8 ≈ 1.34
    
    • Presence Penalty: 「Qualiteg」がすでに存在しているため、logits["Qualiteg"] に 1.5 のペナルティを適用します。
    logits["Qualiteg"] /= 1.5
    1.34 / 1.5 ≈ 0.89
    

    ペナルティを適用した後のログ確率

    ["Qualiteg": 0.89, "May": 1.5, "Change": 1.0, "the": 0.5, "World": 0.3, "with": 0.2, "ChatStream": 0.1]
    
  • ステップ 3: Temperatureの適用
    次に、temperature を適用して確率分布を調整します。temperature が 0.7 に設定されている場合、各ログ確率は 0.7 で割られます。

    logits["Qualiteg"] /= 0.7
    0.89 / 0.7 ≈ 1.27
    
    logits["May"] /= 0.7
    1.5 / 0.7 ≈ 2.14
    
    logits["Change"] /= 0.7
    1.0 / 0.7 ≈ 1.43
    
    logits["the"] /= 0.7
    0.5 / 0.7 ≈ 0.71
    
    logits["World"] /= 0.7
    0.3 / 0.7 ≈ 0.43
    

    調整後のログ確率:

    ["Qualiteg": 1.27, "May": 2.14, "Change": 1.43, "the": 0.71, "World": 0.43, "with": 0.29, "ChatStream": 0.14]
    
  • ステップ 4: Top-kの適用
    次に、top-k を適用します。ここでは top-k=50 ですが、上位5個のトークンのみを示します。

    上位トークン:

    ["May": 2.14, "Change": 1.43, "Qualiteg": 1.27, "the": 0.71, "World": 0.43]
    
  • ステップ 5: Top-pの適用
    最後に、top-p を適用します。ここでは top-p=0.9 です。累積確率が 0.9 を超えるまでトークンを選択します。

    累積確率の計算:

    • 確率の計算:

      • May: exp(2.14) ≈ 8.50
      • Change: exp(1.43) ≈ 4.18
      • Qualiteg: exp(1.27) ≈ 3.56
      • the: exp(0.71) ≈ 2.03
      • World: exp(0.43) ≈ 1.54

      合計:8.50 + 4.18 + 3.56 + 2.03 + 1.54 ≈ 19.81

    • 累積確率の計算:

      • May: 8.50 / 19.81 ≈ 0.43
      • Change: 4.18 / 19.81 ≈ 0.21
      • Qualiteg: 3.56 / 19.81 ≈ 0.18
      • ここまでの累積確率:0.43 + 0.21 + 0.18 ≈ 0.82
      • the: 2.03 / 19.81 ≈ 0.10(累積確率:0.82 + 0.10 ≈ 0.92)

    累積確率が 0.9 を超えたため、the までのトークンが選択肢に残ります

    ["May": 2.14, "Change": 1.43, "Qualiteg": 1.27, "the": 0.71]
    
  • ステップ 6: トークンの選択
    最終的に残ったトークンからランダムに次のトークンが選ばれます。この例では、["May", "Change", "Qualiteg", "the"] の中から1つが選ばれます。

このシナリオでは、ペナルティ、temperaturetop-ktop-p がどのように組み合わさってテキスト生成に影響を与えるかをみてきました。

ペナルティは特定のトークンの出現確率を調整し、temperature は分布の形状を変え、top-ktop-p は選択肢を絞り込むことで、最終的に生成されるテキストの質と多様性を制御することが実際の計算過程を追うことで理解できたとおもいます。

まとめ

今日は、3種類のペナルティとその周辺にあるサンプリング手法をみてきました。

ChatStreamにも今日作成した PenaltyProcessorを取り込むことが可能です。(ただし、ChatStreamにはすでにPenaltyProcessorのプリセット実装が存在しますが) 基本的に、logitsをどのようにサンプリングするかはサービス提供者の自由ですので、好きなProcessorを好きな順序で組み合わせることができます。
サンプリングを適用したいモデルに対して、もっとも好ましい出力となるようなサンプリングクラス(関数)の組み合わせ方、実際の値をどうするか、などは実際のモデルの入出力結果を測定して判断していくことになるとおもいます。このあたりは、ノウハウのかたまりでもあるので、もしご興味があればQualitegにぜひご相談ください。

ペナルティの比較

[付録]ペナルティの比較

ペナルティタイプ 目的 適用方法 ペナルティの例
Repetition Penalty 特定のトークンやフレーズが繰り返されるのを防ぐ。 過去に生成されたすべてのトークンのログ確率(logits)に対してペナルティを適用する。 例えば、あるトークンがすでに生成された場合、そのトークンのログ確率をペナルティ値で割る(乗算)か、ペナルティ値を引く(減算)。
Frequency Penalty 生成されたトークンの出現頻度に基づいてペナルティを適用し、頻繁に出現するトークンを抑制する。 各トークンが生成された回数に基づいてペナルティを適用する。トークンが出現するたびに、そのトークンの出現確率を低減させる。 トークンが出現するたびに、そのトークンのログ確率をペナルティ値で累積的に割る(乗算)か、ペナルティ値を累積的に引く(減算)。
Presence Penalty すでに生成されたトークンが再度出現するのを防ぐ。 トークンが一度でも生成されたかどうかに基づいてペナルティを適用する。一度生成されたトークンには再出現の際にペナルティが適用される。 一度生成されたトークンのログ確率をペナルティ値で割る(乗算)か、ペナルティ値を引く(減算)。

Read more

GPUメモリ最適化の深層:初回と最終バッチの特殊性を踏まえた効率的なAI画像処理

GPUメモリ最適化の深層:初回と最終バッチの特殊性を踏まえた効率的なAI画像処理

はじめに こんにちは!Qualitegプロダクト開発部です。 当社では、LLMテクノロジーをベースとしたAIキャラクター、AIヒューマンの研究開発を行っています。そんな中、表情、仕草のように「人間らしさ」をもったバーチャルヒューマンを再現するときには画像生成、画像編集といったAIを活用した画像処理が必要となります。 人と対話するAIヒューマンやバーチャルヒューマンはタイムリーに表情や仕草を生成する必要があるため、複数の画像をフレーム連結してつくるモーション(シンプルにいうと動画)を短時間に生成する必要があります。 このようなとき、AIトレーニングやシンプルな推論とは異なり、いかにGPUの能力を引き出してやるか「GPUの使いこなし術」がミソとなります。 GPUの使いこなし術というと、以前のブログにも連続バッチやダイナミックバッチについてLLM推論のコンテクストで語りましたが、本日は画像処理におけるGPUメモリ最適化、とくに、推論時バッチにおける「初回と最終回」のお作法という少しマニアックな話題について語ってみようとおもいます。 画像処理とGPU GPUを用いた画像

By Qualiteg プロダクト開発部
Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 Qualitegセレクション、アイディア深堀編もいよいよ第3弾!今回は、複数人でアイディアを発散・深堀する際に効果的な RoundRobin(ラウンドロビン) という手法をご紹介します。ブレインストーミングに行き詰まった時や、多様な視点を取り入れたい時にぜひ活用してみてください。 RoundRobinとは? RoundRobinとは、様々な場面で用いられますが、大抵の場合において「持ち回り」、つまり「何かの役割・出番をたくさんの物事・人員で交替しあう」というような意味で使うことが多いです。 ここでは、参加者全員が順番にアイディアを出し、それを記録していく手法をRoundRobinと呼んでいます。順番に意見を述べることで、発言力の差による偏りをなくし、全

By Join us, Michele on Qualiteg's adventure to innovation
PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

古いPyTorchコード資産を持っている会社は、昔のコードが最新のPyTorchで動かない!最新のGPUで動かない!ということに遭遇することが多いのでしょうか。 今回は、PyTorchバージョン、対応GPU Capability Level 、対応CUDAバージョンについてまとめてみます。 PyTorchがサポートするGPUの Compute Capability PyTorch バージョン サポートされる Compute Capability (SM) レベル 1.0.0 - 1.3.1 SM_35, SM_37, SM_50, SM_60, SM_61, SM_70 1.4.0 - 1.7.1 SM_37, SM_50,

By Qualiteg プロダクト開発部
Qualitegセレクション:アイディア深堀編②6W2Hの活用術

Qualitegセレクション:アイディア深堀編②6W2Hの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 本日のテーマは6W2H Qualitegセレクションは、ユーザーエクスペリエンス(UX)向上のためのヒントやツールを紹介するシリーズです。今回は、アイディアをより具体的に、実行可能なレベルまで深堀りする手法として、6W2Hの活用術をご紹介します。 優れたUXを実現するには、ユーザーのニーズを深く理解し、それを満たすサービスやプロダクトを提供することが不可欠です。そのためには、アイディア段階で徹底的に検討し、実現可能性や課題を明確にする必要があります。 今回は、アイディアを深堀りする際に非常に役立つツール「6W2H」について詳しくご紹介します。 6W2Hとは? 6W2Hは、問題解決や状況分析のための強力なフレームワークです。以下の8つの質問から構成さ

By Join us, Michele on Qualiteg's adventure to innovation