株式会社Qualiteg、NVIDIA Inceptionプログラムに採択

株式会社Qualiteg、NVIDIA Inceptionプログラムに採択
Photo by Cytonn Photography / Unsplash

2024年4月25日、株式会社QualitegはNVIDIA Inceptionプログラムに採択されました。これにより、私たちは世界中の革新的なスタートアップとともに、先進技術の開発と普及に向けて新たな一歩を踏み出すこととなりました。

LLMサービス開発への期待

NVIDIA Inceptionプログラムに採用されたことで、当社は大規模言語モデル(LLM)サービスの開発事業者として、更なる飛躍が期待されております。

特に、NVIDIAが提供する高度なAIリソースとツールを活用することで、以下のような可能性が広がります。

  1. 高性能なAIモデルの開発
    NVIDIAのAI Foundation Modelsを利用することで、最先端のAIモデルを迅速に構築し、カスタマイズして展開することができます。これにより、業界をリードする革新的なソリューションの提供が可能となります。
  2. エンジニアリングリソースの強化
    NVIDIA Developer Programに参加することで、エンジニアは最新のツールやリソース、専門家によるサポートを受けることができます。これにより、開発効率の向上と技術力の強化が期待されます。
  3. エンタープライズ向けソリューションの提供
    NVIDIA NeMo LLMサービスを活用することで、企業向けの高度なAIアプリケーションをクラウド上に迅速に展開することができます。特に、NeMo Retrieverなどの情報検索サービスを組み込むことで、企業の特定のニーズに応じたカスタマイズが可能となります。

今後の展望

NVIDIA Inceptionプログラムを通じて、当社は技術開発とイノベーションの加速を目指します。
具体的には、次のようなプロジェクトで積極的にInceptionを活用する所存です。

  • 新製品の開発
    大規模言語モデルを活用した新しいLLM,AI製品の開発に取り組み、顧客により価値のあるサービスを提供します。
  • 産業応用の拡大
    LLM,AI技術をさまざまな産業に応用し、効率化や新しいビジネスチャンスを創出します。
  • グローバル展開
    NVIDIAのグローバルなネットワークを活用し、世界中の市場で当社の技術を展開します。

今回のNVIDIA Inceptionプログラムへの採択は、当社にとって大きな一歩です。この機会を最大限に活用し、これからも皆様に革新的なソリューションを提供してまいります。引き続き、株式会社Qualitegをどうぞよろしくお願いいたします。

株式会社Qualiteg 一同

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部