[ChatStream] クイックスタート

[ChatStream] クイックスタート

こんにちは! (株)Qualiteg プロダクト開発部 です!

まだまだ暑いですね!

早速、昨日発表しました ChatStream をつかったリアルタイムストリーミングチャットサーバーを作ってみたいと思います。

パッケージのインストール

早速 ChatStream パッケージのインストールをしていきます

pip install chatstream

必要パッケージのインストール

pip install torch torchvision torchaudio
pip install transformers
pip install "uvicorn[standard]" gunicorn 

ChatStream サーバーの実装

今回は RedPajamaINCITE をLLMとしてつかったストリーミングチャットサーバーを実装します。

chatstream_server.py

import torch
from fastapi import FastAPI, Request
from fastsession import FastSessionMiddleware, MemoryStore
from transformers import AutoTokenizer, AutoModelForCausalLM

from chatstream import ChatStream,ChatPromptTogetherRedPajamaINCITEChat as ChatPrompt

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,# 文章生成の最大同時実行数
    max_queue_size=5,# 待ち行列の大きさ
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

app = FastAPI()

# ユーザーごとの ChatPrompt を HTTP セッションに保持するため、セッションミドルウェアを指定
app.add_middleware(FastSessionMiddleware,
                   secret_key="your-session-secret-key",
                   store=MemoryStore(),
                   http_only=True,
                   secure=False,
                   )


@app.post("/chat_stream")
async def stream_api(request: Request):
    # FastAPI の Request オブジェクトを `handle_chat_stream_request` に渡すだけで自動的にキューイング、同時実行制御します
    response = await chat_stream.handle_chat_stream_request(request)
    return response


@app.on_event("startup")
async def startup():
    # Webサーバー起動と同時に `start_queue_worker` を行い、キューイングシステムを開始します
    await chat_stream.start_queue_worker()

コンストラクターパラメータでパフォーマンス調整

num_of_concurrent_executions

num_of_concurrent_executions=2 は文章生成の最大同時実行数を表しています。この数字が大きいほど、複数の文章生成を並行実行することができます。ただし、大きすぎると、トークン生成速度(トークン/秒)が遅くなるため、GPUの性能にあわせて適切な値を設定してください。たとえば、GPUが A4000 x 1枚 程度の性能の場合は num_of_concurrent_executions=5~10 程度が「快適」と思える生成速度となります。

max_queue_size

max_queue_size=5 は、文章生成の同時実行が埋まっているときに、文章生成待ちをしているリクエストの最大数です。たとえば、上の例のように文章生成の同時実行数の最大数 num_of_concurrent_executions==2 に達しているとき、3番目のリクエストからは待ち行列に入ります。3番目から8番目までは、文章生成を待っている状態で、チャットUI上ではプログレスバーとなります。では、この状態で9番目のリクエストが来たらどうなるでしょうか。

その場合、9番目のリクエストには「現在、文章生成サーバーがBusyです」の旨UIに表示されます。

(ただしこのような状況はサービスとして好ましくないため、このような状況が発生しないよう複数のノードをあらかじめ準備しておくことができます。また、急遽想定以上のアクセスが発生したときに、新しいノードが立ち上がるように設定しておくこともできます。これにより、負荷が多くなったときに、新しいノードが立ち上がり、待ち時間の無いチャットサービスを提供することができます。これら、スケーリングに関する設定方法は別途投稿いたします。)

プロンプト処理クラス "ChatPrompt"を作る

ユーザーによる入力テキストをLLM用のフォーマットに書き換えるためのプロンプト処理クラスはChatPrompt クラスと呼びます。

Qualiteg では、新しい LLM が発表されるたび、そのモデル用の ChatPrompt クラスを作成・バンドルしていますが、自前で作成することもできます。

ここでは今回のサンプルで利用した RedpajamaIncite のモデル用の ChatPromptクラスをご紹介します

from chatstream import AbstractChatPrompt


class ChatPromptTogetherRedPajamaINCITEChat(AbstractChatPrompt):
    """
    togethercomputer/RedPajama-INCITE-7B-Chat
    """

    def __init__(self):
        super().__init__()  # Call the initialization of the base class
        self.set_requester("<human>")
        self.set_responder("<bot>")
        self.set_prefix_as_stop_str_enabled(True)  # enable requester's prompt suffix as stop str

    def get_stop_strs(self):
        return ['<|endoftext|>']

    def create_prompt(self, opts={}):
        """
        Build prompts according to the characteristics of each language model
        :return:
        """
        if self.chat_mode == False:
            return self.get_requester_last_msg()

        ret = self.system
        for chat_content in self.get_contents(opts):
            chat_content_role = chat_content.get_role()
            chat_content_message = chat_content.get_message()

            if chat_content_role:
                if chat_content_message:
                    merged_message = chat_content_role + ": " + chat_content_message + "\n"
                else:
                    merged_message = chat_content_role + ":"

                ret += merged_message

        return ret

    async def build_initial_prompt(self, chat_prompt):
        pass
        # If you want a common initial prompt for instructions, override this method and implement
        # chat_prompt.add_requester_msg("Do you know about the Titanic movie?")
        # chat_prompt.add_responder_msg("Yes, I am familiar with it.")
        # chat_prompt.add_requester_msg("Who starred in the movie?")
        # chat_prompt.add_responder_msg("Leonardo DiCaprio and Kate Winslet.")

単純なモデルの場合は、LLMに入力するプロンプトテキストは、テンプレートマッチングだけで表現できますが、複雑な処理が必要な場合には、このようにChatPromptクラスとして実装したほうが柔軟な処理ができます。


Read more

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

こんにちは! ChatGPTやClaudeといった生成AIサービスが業務に浸透し始めた今、 「AIに機密情報を送ってしまうリスク」 が新たなセキュリティ課題として浮上しています。 この課題に向き合う中で、私たちは改めて「企業のセキュリティアーキテクチャはどう変遷してきたのか」を振り返る機会がありました。 すると、ある疑問が浮かんできます。 「なんでこんなに複雑になってるんだっけ?」 企業のセキュリティ担当者なら、一度は思ったことがあるのではないでしょうか。 アルファベット3〜4文字の製品が乱立し、それぞれが微妙に重複した機能を持ち、設定は複雑化し、コストは膨らみ続けています。 当社ではAIセキュリティ関連プロダクトをご提供しておりますが、AI時代のセキュリティを考える上でも、この歴史を理解することは重要ではないかと考えました。 本記事では、企業ネットワークセキュリティの変遷を振り返りながら、「なぜこうなったのか」を整理してみたいと思います。 第1章:観測点を集約できた時代 ― オンプレAD + Proxy(〜2010年代前半) 統制しやすかったモデル かつ

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

こんにちは。 —— 2003年のSOAから、2026年のAIへ —— この記事は、過去の技術動向を振り返り、そこから学べる教訓について考察してみたものです。 歴史は常に、後から見れば明らかなことが、当時は見えなかったという教訓を与えてくれます。 そして、今私たちが「正しい」と信じていることもまた、20年後には違う評価を受けているかもしれません。 だからこそ、振り返ることには意味があるとおもいます。同じ轍を踏まないために。 はじめに:20年前の熱狂を覚えていますか 2000年代初頭。 私はSOA(サービス指向アーキテクチャ)に本気で取り組んでいました。 当時、SOAは「次世代のエンタープライズアーキテクチャ」として、業界全体が熱狂していました。 カンファレンスに行けば満員御礼、ベンダーのブースには人だかり、書店にも関連の書籍がちらほらと。 SOAP、SOAP with attachments、JAX-RPC、WS-Security、WS-ReliableMessaging、WS-AtomicTransaction... 仕様書の山と格闘する日々でした。 あれから

By Qualiteg コンサルティング
DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部
サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

サブスクビジネス完全攻略 第2回~「解約率5%」が1年後に半分の顧客を消す恐怖と、それを防ぐ科学

こんにちは! Qualitegコンサルティングです! 前回の第1回では、サブスクリプションビジネスの基本構造と、LTV・ユニットエコノミクスという革命的な考え方を解説しました。「LTV > 3 × CAC」という黄金律、覚えていますか? サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイドなぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。

By Qualiteg コンサルティング