[ChatStream] クイックスタート

[ChatStream] クイックスタート

こんにちは! (株)Qualiteg プロダクト開発部 です!

まだまだ暑いですね!

早速、昨日発表しました ChatStream をつかったリアルタイムストリーミングチャットサーバーを作ってみたいと思います。

パッケージのインストール

早速 ChatStream パッケージのインストールをしていきます

pip install chatstream

必要パッケージのインストール

pip install torch torchvision torchaudio
pip install transformers
pip install "uvicorn[standard]" gunicorn 

ChatStream サーバーの実装

今回は RedPajamaINCITE をLLMとしてつかったストリーミングチャットサーバーを実装します。

chatstream_server.py

import torch
from fastapi import FastAPI, Request
from fastsession import FastSessionMiddleware, MemoryStore
from transformers import AutoTokenizer, AutoModelForCausalLM

from chatstream import ChatStream,ChatPromptTogetherRedPajamaINCITEChat as ChatPrompt

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
device = "cuda"  # "cuda" / "cpu"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)

chat_stream = ChatStream(
    num_of_concurrent_executions=2,# 文章生成の最大同時実行数
    max_queue_size=5,# 待ち行列の大きさ
    model=model,
    tokenizer=tokenizer,
    device=device,
    chat_prompt_clazz=ChatPrompt,
)

app = FastAPI()

# ユーザーごとの ChatPrompt を HTTP セッションに保持するため、セッションミドルウェアを指定
app.add_middleware(FastSessionMiddleware,
                   secret_key="your-session-secret-key",
                   store=MemoryStore(),
                   http_only=True,
                   secure=False,
                   )


@app.post("/chat_stream")
async def stream_api(request: Request):
    # FastAPI の Request オブジェクトを `handle_chat_stream_request` に渡すだけで自動的にキューイング、同時実行制御します
    response = await chat_stream.handle_chat_stream_request(request)
    return response


@app.on_event("startup")
async def startup():
    # Webサーバー起動と同時に `start_queue_worker` を行い、キューイングシステムを開始します
    await chat_stream.start_queue_worker()

コンストラクターパラメータでパフォーマンス調整

num_of_concurrent_executions

num_of_concurrent_executions=2 は文章生成の最大同時実行数を表しています。この数字が大きいほど、複数の文章生成を並行実行することができます。ただし、大きすぎると、トークン生成速度(トークン/秒)が遅くなるため、GPUの性能にあわせて適切な値を設定してください。たとえば、GPUが A4000 x 1枚 程度の性能の場合は num_of_concurrent_executions=5~10 程度が「快適」と思える生成速度となります。

max_queue_size

max_queue_size=5 は、文章生成の同時実行が埋まっているときに、文章生成待ちをしているリクエストの最大数です。たとえば、上の例のように文章生成の同時実行数の最大数 num_of_concurrent_executions==2 に達しているとき、3番目のリクエストからは待ち行列に入ります。3番目から8番目までは、文章生成を待っている状態で、チャットUI上ではプログレスバーとなります。では、この状態で9番目のリクエストが来たらどうなるでしょうか。

その場合、9番目のリクエストには「現在、文章生成サーバーがBusyです」の旨UIに表示されます。

(ただしこのような状況はサービスとして好ましくないため、このような状況が発生しないよう複数のノードをあらかじめ準備しておくことができます。また、急遽想定以上のアクセスが発生したときに、新しいノードが立ち上がるように設定しておくこともできます。これにより、負荷が多くなったときに、新しいノードが立ち上がり、待ち時間の無いチャットサービスを提供することができます。これら、スケーリングに関する設定方法は別途投稿いたします。)

プロンプト処理クラス "ChatPrompt"を作る

ユーザーによる入力テキストをLLM用のフォーマットに書き換えるためのプロンプト処理クラスはChatPrompt クラスと呼びます。

Qualiteg では、新しい LLM が発表されるたび、そのモデル用の ChatPrompt クラスを作成・バンドルしていますが、自前で作成することもできます。

ここでは今回のサンプルで利用した RedpajamaIncite のモデル用の ChatPromptクラスをご紹介します

from chatstream import AbstractChatPrompt


class ChatPromptTogetherRedPajamaINCITEChat(AbstractChatPrompt):
    """
    togethercomputer/RedPajama-INCITE-7B-Chat
    """

    def __init__(self):
        super().__init__()  # Call the initialization of the base class
        self.set_requester("<human>")
        self.set_responder("<bot>")
        self.set_prefix_as_stop_str_enabled(True)  # enable requester's prompt suffix as stop str

    def get_stop_strs(self):
        return ['<|endoftext|>']

    def create_prompt(self, opts={}):
        """
        Build prompts according to the characteristics of each language model
        :return:
        """
        if self.chat_mode == False:
            return self.get_requester_last_msg()

        ret = self.system
        for chat_content in self.get_contents(opts):
            chat_content_role = chat_content.get_role()
            chat_content_message = chat_content.get_message()

            if chat_content_role:
                if chat_content_message:
                    merged_message = chat_content_role + ": " + chat_content_message + "\n"
                else:
                    merged_message = chat_content_role + ":"

                ret += merged_message

        return ret

    async def build_initial_prompt(self, chat_prompt):
        pass
        # If you want a common initial prompt for instructions, override this method and implement
        # chat_prompt.add_requester_msg("Do you know about the Titanic movie?")
        # chat_prompt.add_responder_msg("Yes, I am familiar with it.")
        # chat_prompt.add_requester_msg("Who starred in the movie?")
        # chat_prompt.add_responder_msg("Leonardo DiCaprio and Kate Winslet.")

単純なモデルの場合は、LLMに入力するプロンプトテキストは、テンプレートマッチングだけで表現できますが、複雑な処理が必要な場合には、このようにChatPromptクラスとして実装したほうが柔軟な処理ができます。


Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部