推論速度を向上させる Speculative Decoding(投機的デコーディング)とは

推論速度を向上させる Speculative Decoding(投機的デコーディング)とは
Photo by BoliviaInteligente / Unsplash

こんにちは Qualiteg 研究部です。

投機的デコーディングとは何か?

投機的デコーディングは、大規模言語モデル(LLM)の推論速度を向上させる技術です。

たいていのモデルを1.4~2.0倍程度、高速化できることが報告されています。

このアプローチでは、小さなモデル(ドラフトモデル)を使用して初期の予測を行い、その結果を大きなモデル(ターゲットモデル)が検証することで、全体の推論プロセスを高速化します。

ざっくりいうと、

大きなモデルは計算負荷も高く計算速度も遅いので、まず、小さなモデルで高速に計算したあとで、その計算結果をうまくつかって大きなモデルでの計算負荷をさげ、スピードを向上させようというアイデアです。

基本的に大きなモデルと、小さなモデルはサイズ以外は基本的にまったく同じネットワーク構造をしていることが前提となります。

たとえば 70Bの Llama3 と 8B の Llama3 を組み合わせてつかうイメージです。

当然70B の Llama3 の推論計算のほうが 8B よりも重たくなりますので、小さい8BのLlama3 で先回りして推論計算することで高速化を行うというテクニックとなります。

投機的デコーディングのメカニズム

投機的デコーディングでは、小さなモデル(ドラフトモデル)の予測結果を大きなモデル(ターゲットモデル)で使用するかどうかを判断する際、主に以下の手順と考慮点があります

  1. ドラフトモデルの生成: ドラフトモデルは、予測の初期段階で複数の候補トークンを高速に生成します。このモデルはターゲットモデルよりもはるかに小さいため、予測を迅速に行うことができます。
  2. ターゲットモデルによる検証: ターゲットモデルは、ドラフトモデルが生成したトークンを検証し、それらが妥当であるかどうかを判断します。このプロセスでは、ドラフトモデルの出力とターゲットモデルの予測を比較し、一致するトークンのみが最終的な出力として採用されます。
  3. TAR(Token Acceptance Rate)の計算: TARは、ドラフトモデルが生成したトークンのうち、ターゲットモデルが受け入れたトークンの割合を示します。この割合が高いほど、ドラフトモデルの予測がターゲットモデルの基準に適合していることを意味し、スループットの向上に貢献します。
  4. スループットとレイテンシーのトレードオフ: ドラフトモデルを使用する主な目的は、推論プロセスのスループットを向上させることです。ドラフトモデルのレイテンシーが十分に低く、かつTARが高い場合、このアプローチは全体の推論時間を短縮し、効率を向上させることができます。
  5. パフォーマンスのベンチマーク: 実際にドラフトモデルとターゲットモデルを使用する際には、異なるドラフトモデルの構成とサイズで複数の実験を行い、最適な設定を見つける必要があります。これにより、どのドラフトモデルが最も効果的であるかを科学的に判断することが可能です。

以上の手順と考慮点によって、小さなモデルの予測結果が大きなモデルで実用的に使用できるかどうかを判断することができます。

ドラフトモデルでの計算結果をターゲットモデルが評価するときに、結局ターゲットモデルでの推論計算が走るから、計算量削減にはならないのではないか?

そんな疑問が浮かびませんか?

ターゲットモデルで計算を行うとなると、なぜ小さなモデルを使うのか疑問に思うのは理解できます。

投機的デコーディングの利点(というか、コアとなるアイデア)は、ターゲットモデルの計算負荷を効率的に管理する点にあります。ここでは、計算が削減されるメカニズムを具体的に説明します。

投機的デコーディングの基本プロセス

  1. ドラフトモデルの利用:
    ドラフトモデルは、低レイテンシーで多数の候補トークンを生成します。これはターゲットモデルよりもはるかに迅速に行われます。
  2. バッチ処理
    ターゲットモデルでは、ドラフトモデルが生成した複数のトークンを一度に検証します。これは通常のオートリグレッシブ生成(トークンを1つずつ生成)と比べて、モデルが一度に多くのデータを処理できるため、GPUなどの計算リソースを効率的に利用できます。
  3. プリフィル手法:
    ターゲットモデルは、ドラフトモデルが生成した複数のトークンに基づいて予測を行い、これを一種のプリフィル(事前充填)として使用します。ターゲットモデルがすべての候補を1つずつ独立に生成する代わりに、有効なトークンのセットを確認し、受け入れることで、計算を省略します。

実際の計算削減のポイント

  • 並列処理
    ターゲットモデルがドラフトモデルから提供されたトークン群をバッチで処理することにより、トークンごとの生成ではなく、効率的な並列処理が可能になります。
  • 選択的検証
    ターゲットモデルは有効と判断したトークンのみを受け入れます。これにより、全体的な生成プロセスのステップ数が減少し、無駄な計算が省かれます。
  • 効率的なデータ処理
    ドラフトモデルからの入力を使用することで、ターゲットモデルは入力の一部としてこれを活用し、全体の計算負荷を削減します。

まとめ

いかがでしたでしょうか、今回はなるべく数式を用いずに、投機的デコーディングについて解説してみました。

投機的デコーディングでは、確かにターゲットモデルで最終的な計算が行われますが、ドラフトモデルの出力を利用して効率的に処理を行うことで、全体の計算コストとレイテンシーを削減できます。この方法により、ターゲットモデルの計算負担が軽減され、より迅速かつ効率的なデータ処理が可能になります。

参考文献

https://arxiv.org/pdf/2211.17192
https://arxiv.org/pdf/2302.01318

論文「2402.01528v2」と「2211.17192v2」によりますと、投機的デコーディングの有効性はドラフトモデルの選定に大きく依存しているようです。

これらの研究では、異なるドラフトモデルがどのようにターゲットモデルの性能に影響を与えるかを検証していますが、とくにトークン受容率(TAR)=ドラフトモデルが生成したトークンのうち、ターゲットモデルがどれだけ受け入れるかが、スループット向上の鍵を握るようです。当然といえば当然で、ドラフトモデルがイケてるトークン(logits)をどれだけ出せるか、ですね。

Read more

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

こんにちは! きょうは話題のMCPについて解説いたします! はじめに 「AIが便利なのはわかるけど、自分のデータにアクセスさせたり、他のアプリと連携させたりするのは難しそう...」 このような悩みを持っている方は多いのではないでしょうか。 実際、従来のAIには大きな壁がありました。トレーニングデータの範囲でしか回答できない、リアルタイム情報にアクセスできない、外部アプリケーションを操作できないなどの制約です。 トレーニングデータの外側にあるデータをうまく検索する技術としてLLM黎明期からRAGとよばれる技術が発展してきました。 データ検索だけではなく、あらゆる分野でAIが半ば自動で連携してくれる技術が登場しました。 それが「Model Context Protocol(MCP)」です。 本記事では、AIと外部ツールの連携を革新的に簡単にするMCPについて、基本から実用まで詳しく解説します。 MCPの本質:AIのための標準インターフェース MCPは、AIモデルと外部ツール・アプリケーションの間の通信を標準化するプロトコルです。これはインターネットの世界でいえば、

By Qualiteg プロダクト開発部
GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation