推論速度を向上させる Speculative Decoding(投機的デコーディング)とは

推論速度を向上させる Speculative Decoding(投機的デコーディング)とは
Photo by BoliviaInteligente / Unsplash

こんにちは Qualiteg 研究部です。

投機的デコーディングとは何か?

投機的デコーディングは、大規模言語モデル(LLM)の推論速度を向上させる技術です。

たいていのモデルを1.4~2.0倍程度、高速化できることが報告されています。

このアプローチでは、小さなモデル(ドラフトモデル)を使用して初期の予測を行い、その結果を大きなモデル(ターゲットモデル)が検証することで、全体の推論プロセスを高速化します。

ざっくりいうと、

大きなモデルは計算負荷も高く計算速度も遅いので、まず、小さなモデルで高速に計算したあとで、その計算結果をうまくつかって大きなモデルでの計算負荷をさげ、スピードを向上させようというアイデアです。

基本的に大きなモデルと、小さなモデルはサイズ以外は基本的にまったく同じネットワーク構造をしていることが前提となります。

たとえば 70Bの Llama3 と 8B の Llama3 を組み合わせてつかうイメージです。

当然70B の Llama3 の推論計算のほうが 8B よりも重たくなりますので、小さい8BのLlama3 で先回りして推論計算することで高速化を行うというテクニックとなります。

投機的デコーディングのメカニズム

投機的デコーディングでは、小さなモデル(ドラフトモデル)の予測結果を大きなモデル(ターゲットモデル)で使用するかどうかを判断する際、主に以下の手順と考慮点があります

  1. ドラフトモデルの生成: ドラフトモデルは、予測の初期段階で複数の候補トークンを高速に生成します。このモデルはターゲットモデルよりもはるかに小さいため、予測を迅速に行うことができます。
  2. ターゲットモデルによる検証: ターゲットモデルは、ドラフトモデルが生成したトークンを検証し、それらが妥当であるかどうかを判断します。このプロセスでは、ドラフトモデルの出力とターゲットモデルの予測を比較し、一致するトークンのみが最終的な出力として採用されます。
  3. TAR(Token Acceptance Rate)の計算: TARは、ドラフトモデルが生成したトークンのうち、ターゲットモデルが受け入れたトークンの割合を示します。この割合が高いほど、ドラフトモデルの予測がターゲットモデルの基準に適合していることを意味し、スループットの向上に貢献します。
  4. スループットとレイテンシーのトレードオフ: ドラフトモデルを使用する主な目的は、推論プロセスのスループットを向上させることです。ドラフトモデルのレイテンシーが十分に低く、かつTARが高い場合、このアプローチは全体の推論時間を短縮し、効率を向上させることができます。
  5. パフォーマンスのベンチマーク: 実際にドラフトモデルとターゲットモデルを使用する際には、異なるドラフトモデルの構成とサイズで複数の実験を行い、最適な設定を見つける必要があります。これにより、どのドラフトモデルが最も効果的であるかを科学的に判断することが可能です。

以上の手順と考慮点によって、小さなモデルの予測結果が大きなモデルで実用的に使用できるかどうかを判断することができます。

ドラフトモデルでの計算結果をターゲットモデルが評価するときに、結局ターゲットモデルでの推論計算が走るから、計算量削減にはならないのではないか?

そんな疑問が浮かびませんか?

ターゲットモデルで計算を行うとなると、なぜ小さなモデルを使うのか疑問に思うのは理解できます。

投機的デコーディングの利点(というか、コアとなるアイデア)は、ターゲットモデルの計算負荷を効率的に管理する点にあります。ここでは、計算が削減されるメカニズムを具体的に説明します。

投機的デコーディングの基本プロセス

  1. ドラフトモデルの利用:
    ドラフトモデルは、低レイテンシーで多数の候補トークンを生成します。これはターゲットモデルよりもはるかに迅速に行われます。
  2. バッチ処理
    ターゲットモデルでは、ドラフトモデルが生成した複数のトークンを一度に検証します。これは通常のオートリグレッシブ生成(トークンを1つずつ生成)と比べて、モデルが一度に多くのデータを処理できるため、GPUなどの計算リソースを効率的に利用できます。
  3. プリフィル手法:
    ターゲットモデルは、ドラフトモデルが生成した複数のトークンに基づいて予測を行い、これを一種のプリフィル(事前充填)として使用します。ターゲットモデルがすべての候補を1つずつ独立に生成する代わりに、有効なトークンのセットを確認し、受け入れることで、計算を省略します。

実際の計算削減のポイント

  • 並列処理
    ターゲットモデルがドラフトモデルから提供されたトークン群をバッチで処理することにより、トークンごとの生成ではなく、効率的な並列処理が可能になります。
  • 選択的検証
    ターゲットモデルは有効と判断したトークンのみを受け入れます。これにより、全体的な生成プロセスのステップ数が減少し、無駄な計算が省かれます。
  • 効率的なデータ処理
    ドラフトモデルからの入力を使用することで、ターゲットモデルは入力の一部としてこれを活用し、全体の計算負荷を削減します。

まとめ

いかがでしたでしょうか、今回はなるべく数式を用いずに、投機的デコーディングについて解説してみました。

投機的デコーディングでは、確かにターゲットモデルで最終的な計算が行われますが、ドラフトモデルの出力を利用して効率的に処理を行うことで、全体の計算コストとレイテンシーを削減できます。この方法により、ターゲットモデルの計算負担が軽減され、より迅速かつ効率的なデータ処理が可能になります。

参考文献

https://arxiv.org/pdf/2211.17192
https://arxiv.org/pdf/2302.01318

論文「2402.01528v2」と「2211.17192v2」によりますと、投機的デコーディングの有効性はドラフトモデルの選定に大きく依存しているようです。

これらの研究では、異なるドラフトモデルがどのようにターゲットモデルの性能に影響を与えるかを検証していますが、とくにトークン受容率(TAR)=ドラフトモデルが生成したトークンのうち、ターゲットモデルがどれだけ受け入れるかが、スループット向上の鍵を握るようです。当然といえば当然で、ドラフトモデルがイケてるトークン(logits)をどれだけ出せるか、ですね。

Read more

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

LLM推論基盤プロビジョニング講座 第5回 GPUノード構成から負荷試験までの実践プロセス

こんにちは!これまでのLLM推論基盤プロビジョニング講座では、推論速度の定義、リクエスト数見積もり、メモリ消費量計算、推論エンジン選定について詳しく解説してきました。 今回は、残りのステップである「GPUノード構成見積もり」「負荷試験」「トレードオフ検討」について一気に解説し、最後に実際のサーバー構成例をご紹介します。 STEP5:GPUノード構成見積もり GPUメモリから考える同時リクエスト処理能力 LLMサービスを構築する際、どのGPUを何台選ぶかは非常に重要な決断です。今回はLlama 8Bモデルを例に、GPUメモリ容量と同時リクエスト処理能力の関係を見ていきましょう。 GPUメモリの使われ方を理解する ここは復習となりますが、 LLM推論においてGPUメモリは主に2つの用途で消費されます 1. モデル重みデータ: LLMモデル自体を格納するためのメモリ 2. KVキャッシュ: ユーザーとの対話コンテキストを保持するための一時メモリ Llama 8Bを16ビット精度で実行する場合、モデル重みデータは約16GBのメモリを占めます。これは固定的なメモリ消

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング