【極めればこのテンソル操作 】reshape(N,-1)

【極めればこのテンソル操作 】reshape(N,-1)
Photo by Sunguk Kim / Unsplash

NumPy reshape: データ形状を自在に操る方法

NumPyのreshape関数は、多次元配列の形状を変更する強力なツールです。この記事では、reshapeの基本的な使い方から応用まで、具体例を交えて詳しく解説します。

1. reshape の基本

reshapeは、配列の要素数を変えずに形状を変更します。

import numpy as np

# 1次元配列を作成
arr = np.array([1, 2, 3, 4, 5, 6])
print("Original array:", arr)
print("Shape:", arr.shape)

# 2x3の2次元配列に変形
reshaped = arr.reshape(2, 3)
print("\nReshaped to 2x3:")
print(reshaped)
print("New shape:", reshaped.shape)

# 出力:
# Original array: [1 2 3 4 5 6]
# Shape: (6,)
# 
# Reshaped to 2x3:
# [[1 2 3]
#  [4 5 6]]
# New shape: (2, 3)

2. 「-1」 の使用

-1を使用すると、その次元のサイズを自動的に計算させることができます。

# 3x2の2次元配列に変形
reshaped_auto = arr.reshape(3, -1)
print("Reshaped to 3x2:")
print(reshaped_auto)
print("Shape:", reshaped_auto.shape)

# 出力:
# Reshaped to 3x2:
# [[1 2]
#  [3 4]
#  [5 6]]
# Shape: (3, 2)

3. 多次元配列の reshape

多次元配列も簡単に形状を変更できます。

# 3D配列を作成
arr_3d = np.arange(24).reshape(2, 3, 4)
print("3D array:")
print(arr_3d)
print("Shape:", arr_3d.shape)

# 4x6の2D配列に変形
reshaped_2d = arr_3d.reshape(4, 6)
print("\nReshaped to 4x6:")
print(reshaped_2d)
print("New shape:", reshaped_2d.shape)

# 出力:
# 3D array:
# [[[ 0  1  2  3]
#   [ 4  5  6  7]
#   [ 8  9 10 11]]
# 
#  [[12 13 14 15]
#   [16 17 18 19]
#   [20 21 22 23]]]
# Shape: (2, 3, 4)
# 
# Reshaped to 4x6:
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]
# New shape: (4, 6)

4. .mat ファイルの読み込みと reshape

私たちは、モデルのエンジニアリングのときによく Matlab データを使用します。Matlab形式データは mat ファイル(.matファイル)とよばれ、汎用性に富んだデータ形式です。

.matファイルから読み込んだデータの形状を調整する例を見てみましょう。

from scipy.io import loadmat

# .matファイルを読み込む(ファイルが存在すると仮定)
mat_data = loadmat('example.mat')
data = mat_data['some_key']

print("Original shape:", data.shape)

# 期待される形状に reshape
expected_shape = (273, 260)
reshaped_data = data.reshape(expected_shape)

print("Reshaped data shape:", reshaped_data.shape)

# 出力:
# Original shape: (70980,)
# Reshaped data shape: (273, 260)

この例では、loadmatで読み込んだデータが1次元にスクイーズされていても、reshapeを使って元の2次元形状に戻すことができます。

5. スクイーズの有無に関わらない安全な reshape

.matファイルの読み込みや他の処理の結果、データがスクイーズされている(次元が減少している)場合でも、reshapeを使って安全に目的のサイズに変形できます。以下の例で、スクイーズされたデータと元の形状のデータの両方に対して同じreshape操作を適用する方法を示します。

import numpy as np
from scipy.io import savemat, loadmat

# オリジナルデータ (2D)
original_data = np.arange(24).reshape(4, 6)
print("Original data shape:", original_data.shape)

# .matファイルに保存
savemat('test_data.mat', {'data': original_data})

# 1. スクイーズされたケース(1D)
squeezed_data = loadmat('test_data.mat')['data'].squeeze()
print("Squeezed data shape:", squeezed_data.shape)

# 2. 2Dで読み込まれたケース
normal_data = loadmat('test_data.mat')['data']
print("Normal loaded data shape:", normal_data.shape)

# 両方のケースに同じreshape操作を適用
target_shape = (4, 6)

reshaped_squeezed = squeezed_data.reshape(target_shape)
reshaped_normal = normal_data.reshape(target_shape)

print("Reshaped from squeezed shape:", reshaped_squeezed.shape)
print("Reshaped from normal shape:", reshaped_normal.shape)

# 元のデータと同じかチェック
print("Squeezed data reshaped correctly:", np.array_equal(original_data, reshaped_squeezed))
print("Normal data reshaped correctly:", np.array_equal(original_data, reshaped_normal))

# 出力:
# Original data shape: (4, 6)
# Squeezed data shape: (24,)
# Normal loaded data shape: (4, 6)
# Reshaped from squeezed shape: (4, 6)
# Reshaped from normal shape: (4, 6)
# Squeezed data reshaped correctly: True
# Normal data reshaped correctly: True

この例から分かるように、reshape操作は非常に柔軟です:

  1. スクイーズされたデータ(1次元)に対しても、
  2. 元の2次元形状のデータに対しても、

同じreshape(4, 6)操作を適用することで、目的の形状に変形できます。

なぜこれが機能するのか

  1. 要素数の保存: reshapeは配列の要素の総数を変更しません。元の総要素数と同じであれば、任意の形状に変更できます。
  2. メモリレイアウト: NumPyは内部的にデータを1次元配列として格納しています。多次元配列は実質的にこの1次元配列の「ビュー」です。そのため、次元数に関係なく柔軟に形状を変更できます。
  3. 順序の保持: reshapeは元の配列の要素順序を保持します。スクイーズされていても元の順序は維持されているため、正しく形状を戻すことができます。

注意点

  • 総要素数が一致していることが前提です。一致していない場合はValueErrorが発生します。
  • 大きな配列の場合、パフォーマンスに影響する可能性があるため、必要に応じて最適化を検討しましょう。

この方法を採用することで、データの読み込み方法や前処理の違いに関わらず、常に期待される形状にデータを整形できます。これにより、後続の処理を安定させ、コードの他の部分に影響を与えずにデータの一貫性を保つことができます。

まとめ

reshapeは、NumPyの中でも特に便利で強力な関数の一つです。データの前処理、機械学習モデルへの入力準備、データ可視化など、様々な場面で活躍します。正しく使用することで、複雑なデータ構造も簡単に操作できるようになります。

ポイントを押さえておけば、reshapeを使いこなすのは難しくありません:

  1. 元の配列の要素数と新しい形状の要素数が一致している必要があります。
  2. -1を使って、1つの次元のサイズを自動計算させることができます。
  3. 多次元配列も簡単に形状を変更できます。
  4. スクイーズされたデータでも、元の形状のデータでも、同じreshape操作で目的の形状に変形できます。
  5. .matファイルの読み込みなど、データ形式の変換時にも便利です。
  6. 他のNumPy操作と組み合わせることで、より柔軟なデータ操作が可能になります。

reshapeを使いこなすことで、データ解析や機械学習のワークフローをよりスムーズにすることができるでしょう。特に、データの形状が不確実な場合でも、reshapeを使って安全に目的の形状に変形できることを覚えておくと、多くの場面で役立つはずです。

参考. reshape と他の操作の組み合わせ

reshapeは他のNumPy操作と組み合わせて使用することもできます。

# 転置と組み合わせる
transposed = arr.reshape(2, 3).T
print("Reshaped and transposed:")
print(transposed)
print("Shape:", transposed.shape)

# フラット化と組み合わせる
flattened = arr_3d.reshape(-1)
print("\nFlattened 3D array:")
print(flattened)
print("Shape:", flattened.shape)

# 出力:
# Reshaped and transposed:
# [[1 4]
#  [2 5]
#  [3 6]]
# Shape: (3, 2)
# 
# Flattened 3D array:
# [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
# Shape: (24,)

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部