【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い

【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い
Photo by Merve Sehirli Nasir / Unsplash

今日は、 unsqueeze(0) の解説しつつ、私たちがよく直面する「あるある」な問題についてもちょこっと話してみたいと思います。

「value.unsqueeze(0)」と「value[None]」 の見分けついていますか?


はい、前者は主に PyTorch、後者は NumPyでの操作の違いです。

でもどちらも、ぱっとみは、先頭に新しく次元を追加する操作なので、コードをちらっとみただけではわからないことがありますよね。

なぜかというと、ディープラーニング系のプログラミングでは PyTorchのテンソルと、NumPyの配列操作がかなり入り混じるからです。

そう、今日の話題はPyTorchとNumPyのコードが入り乱れて、どっちの配列(テンソル)を扱っているのわけワカメになる問題です。

ちなみに、話題のテーマをブラさないように PyTorchでは 先頭に新しい次元を追加するときに unsqueeze(0) だけでなく [None] も使えてしまいますが、いったん[None]は NumPy で主に使用する操作という前提で説明させてくださいませ。^^;

これに対する当社なりの処方箋は、また別投稿をしたいとおもいますが、両者が無邪気に入り混じらないように、PyTorchとNumPyのコードをなるべく分離するようにしています。例えば「同一関数、メソッド内はPyTorchかNumPyに寄せる」、や、「GPU投入寸前までPyTorchテンソル化をガマンしてNumPyでがんばる」など、(涙ぐましい?)現場の工夫をしています^^

NumPy系の変数名には「なんちゃら_numpy」「なんちゃら_tensor」のようにするなど、あまりにも紛らわしいときには、行っていますが、型宣言のゆるいPythonコーディングの慣例上、同一変数名なのにNumPyからPyTorchにいつのまにか変わっていた、なんていう外部コードも大量にあり、なかなか難しいですね。

PyTorchとNumPyが入り乱れる世界 ~機械学習プロジェクトを進めていると、こんな経験ありませんか?

  • データの前処理はNumPyで行っていたのに、モデルに入力するときにはPyTorchのテンソルに変換しなければならない。
  • モデルから出力されたPyTorchのテンソルを、可視化のためにNumPy配列に戻す。
  • そして気づいたら、コード内でNumPyとPyTorchの関数が混在している...

これって、まるでプログラミング言語のバベルの塔ですよね。

今回は、PyTorchの.unsqueeze(0)メソッドとNumPyの[None]インデックスの違いについて詳しく見ていきましょう。一見似ているこれらの操作ですが、実は重要な違いがあります。

1. 基本的な違い

まず、最も基本的な違いは、冒頭でふれたとおり、

  • .unsqueeze(0): PyTorchのテンソルに使用されるメソッドです。
  • [None]: NumPy配列やPythonのリストに使用されるインデックス操作です。
    (コラムに書きましたが、実はPyTorchでも使えちゃいますが、頭に次元追加する操作は PyTorchでは unsqueeze(0)、おしりに次元追加する操作はunsqueeze(-1)でやるのが可読性や操作意図のわかりやすからオススメです)

2. 動作の詳細

.unsqueeze(0)

PyTorchの.unsqueeze(0)メソッドは、テンソルの0次元目(先頭)に新しい次元を追加します。これは、バッチ処理のためにデータを準備する際によく使用されます。1件だけのデータを学習モデルに突っ込みたいときも、「バッチ次元」を求められることが常なので unsqueeze(0) は頻発するコードだとおもいます。

import torch

x = torch.tensor([1, 2, 3])
print(x.shape)  # torch.Size([3])

x_unsqueezed = x.unsqueeze(0)
print(x_unsqueezed.shape)  # torch.Size([1, 3])

[None]

NumPyの[None]インデックスは、配列に新しい軸を追加します。これも実質的に次元を1つ増やすことになります。

例:

import numpy as np

y = np.array([1, 2, 3])
print(y.shape)  # (3,)

y_expanded = y[None]
print(y_expanded.shape)  # (1, 3)

3. 柔軟性の違い

.unsqueeze(n)メソッドは、引数nを変えることで任意の位置に次元を追加できる柔軟性があります。

例:

import torch

z = torch.tensor([[1, 2], [3, 4]])
print(z.shape)  # torch.Size([2, 2])

z_unsqueezed_0 = z.unsqueeze(0)
print(z_unsqueezed_0.shape)  # torch.Size([1, 2, 2])

z_unsqueezed_1 = z.unsqueeze(1)
print(z_unsqueezed_1.shape)  # torch.Size([2, 1, 2])

一方、[None]は常に新しい軸を先頭(axis 0)に追加します。ただし、NumPyにはnp.expand_dims()関数があり、これを使用すると任意の位置に次元を追加できます。

import numpy as np

w = np.array([[1, 2], [3, 4]])
print(w.shape)  # (2, 2)

w_expanded_0 = np.expand_dims(w, axis=0)
print(w_expanded_0.shape)  # (1, 2, 2)

w_expanded_1 = np.expand_dims(w, axis=1)
print(w_expanded_1.shape)  # (2, 1, 2)

4. パフォーマンスの考慮

一般的に、.unsqueeze()[None](またはnp.expand_dims())の間にパフォーマンスの大きな差はありません。しかし、大規模なデータセットや複雑なモデルを扱う場合、わずかな違いが積み重なって影響を与える可能性があります。

PyTorchを使用している場合は.unsqueeze()を、NumPyを使用している場合は[None]np.expand_dims()を使用するのが自然で効率的です。

まとめ ~.unsqueeze(0)[None]の実践的理解~

今回は、.unsqueeze(0)[None]の用法について詳しく解説しました。

問題の本質は、PyTorchとNumPyの混在にありますが、コードを書く上では、どちらの「世界」にいるのかを常に意識することが大切ですね。

コードを読む際には、.unsqueeze(0)が登場したら「ここからPyTorchでの次元追加だな」と考え、[None]を見たら「まだNumPyの領域にいるな」と理解するとよいでしょう。

使用シーンの違いも重要なポイントです。.unsqueeze(0)は多くの場合、1件データのモデル投入の直前に「緊急的な」次元追加として用いられます。そのため、モデル投入直前でよく目にすることになります。一方、[None]による次元追加は、通常モデル投入よりもずっと前の段階、つまりまだNumPy操作のフェーズで行われることが多いです。その後、モデル投入直前でPyTorchテンソルへの変換とGPUへの送り込みが行われるというパターンもよく見かけます。

これらの操作を見かけたら、まずは「バッチ次元追加かな?」と推測してみるのが良いでしょう。バッチ処理のニーズで使われることが多いためです。ただし、必ずしもバッチ次元の追加だけでなく、例えば画像処理ではチャンネル次元の追加に使われることもあるので、コンテキストをよく確認することが大切です。

結論として、.unsqueeze(0)[None]の違いを理解し、適切に使い分けることで、より明確で効率的なコードを書くことができます。また、これらの操作を見かけたときは「バッチ次元の追加かもしれない」と考えつつ、常にコンテキストを確認する習慣をつけることで、コードの意図をより深く理解できるようになるでしょう。

Read more

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation
Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

何度か、WSL にいろんなバージョンのLinux を入れたり消したりしたときに遭遇した現象です ユーザー設定の読み込み中にエラーが発生しました 無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。"icon" を設定するときは、値が画像への有効なファイルパスとなっていることをご確認ください。 が発生するときの原因と対象法のレポートです 原因 使われなくなったゾンビ・プロファイルがWindows Terminal (のキャッシュ)に残り続ける 対処法 このメッセージを解消するには、いったん、プロファイルをリセットする必要がありました。 ※既存プロファイル設定が消える場合があるので留意すること Step1 Windows Terminal を落とす Windows Terminal をいったんすべて落とす Step2 settings.json を消す エクスプローラーで settings.json のあるフォルダに移動しファイルを削除する %LOCALAPPDATA%\Packages\Micros

By Qualiteg プロダクト開発部