【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い

【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い
Photo by Merve Sehirli Nasir / Unsplash

今日は、 unsqueeze(0) の解説しつつ、私たちがよく直面する「あるある」な問題についてもちょこっと話してみたいと思います。

「value.unsqueeze(0)」と「value[None]」 の見分けついていますか?


はい、前者は主に PyTorch、後者は NumPyでの操作の違いです。

でもどちらも、ぱっとみは、先頭に新しく次元を追加する操作なので、コードをちらっとみただけではわからないことがありますよね。

なぜかというと、ディープラーニング系のプログラミングでは PyTorchのテンソルと、NumPyの配列操作がかなり入り混じるからです。

そう、今日の話題はPyTorchとNumPyのコードが入り乱れて、どっちの配列(テンソル)を扱っているのわけワカメになる問題です。

ちなみに、話題のテーマをブラさないように PyTorchでは 先頭に新しい次元を追加するときに unsqueeze(0) だけでなく [None] も使えてしまいますが、いったん[None]は NumPy で主に使用する操作という前提で説明させてくださいませ。^^;

これに対する当社なりの処方箋は、また別投稿をしたいとおもいますが、両者が無邪気に入り混じらないように、PyTorchとNumPyのコードをなるべく分離するようにしています。例えば「同一関数、メソッド内はPyTorchかNumPyに寄せる」、や、「GPU投入寸前までPyTorchテンソル化をガマンしてNumPyでがんばる」など、(涙ぐましい?)現場の工夫をしています^^

NumPy系の変数名には「なんちゃら_numpy」「なんちゃら_tensor」のようにするなど、あまりにも紛らわしいときには、行っていますが、型宣言のゆるいPythonコーディングの慣例上、同一変数名なのにNumPyからPyTorchにいつのまにか変わっていた、なんていう外部コードも大量にあり、なかなか難しいですね。

PyTorchとNumPyが入り乱れる世界 ~機械学習プロジェクトを進めていると、こんな経験ありませんか?

  • データの前処理はNumPyで行っていたのに、モデルに入力するときにはPyTorchのテンソルに変換しなければならない。
  • モデルから出力されたPyTorchのテンソルを、可視化のためにNumPy配列に戻す。
  • そして気づいたら、コード内でNumPyとPyTorchの関数が混在している...

これって、まるでプログラミング言語のバベルの塔ですよね。

今回は、PyTorchの.unsqueeze(0)メソッドとNumPyの[None]インデックスの違いについて詳しく見ていきましょう。一見似ているこれらの操作ですが、実は重要な違いがあります。

1. 基本的な違い

まず、最も基本的な違いは、冒頭でふれたとおり、

  • .unsqueeze(0): PyTorchのテンソルに使用されるメソッドです。
  • [None]: NumPy配列やPythonのリストに使用されるインデックス操作です。
    (コラムに書きましたが、実はPyTorchでも使えちゃいますが、頭に次元追加する操作は PyTorchでは unsqueeze(0)、おしりに次元追加する操作はunsqueeze(-1)でやるのが可読性や操作意図のわかりやすからオススメです)

2. 動作の詳細

.unsqueeze(0)

PyTorchの.unsqueeze(0)メソッドは、テンソルの0次元目(先頭)に新しい次元を追加します。これは、バッチ処理のためにデータを準備する際によく使用されます。1件だけのデータを学習モデルに突っ込みたいときも、「バッチ次元」を求められることが常なので unsqueeze(0) は頻発するコードだとおもいます。

import torch

x = torch.tensor([1, 2, 3])
print(x.shape)  # torch.Size([3])

x_unsqueezed = x.unsqueeze(0)
print(x_unsqueezed.shape)  # torch.Size([1, 3])

[None]

NumPyの[None]インデックスは、配列に新しい軸を追加します。これも実質的に次元を1つ増やすことになります。

例:

import numpy as np

y = np.array([1, 2, 3])
print(y.shape)  # (3,)

y_expanded = y[None]
print(y_expanded.shape)  # (1, 3)

3. 柔軟性の違い

.unsqueeze(n)メソッドは、引数nを変えることで任意の位置に次元を追加できる柔軟性があります。

例:

import torch

z = torch.tensor([[1, 2], [3, 4]])
print(z.shape)  # torch.Size([2, 2])

z_unsqueezed_0 = z.unsqueeze(0)
print(z_unsqueezed_0.shape)  # torch.Size([1, 2, 2])

z_unsqueezed_1 = z.unsqueeze(1)
print(z_unsqueezed_1.shape)  # torch.Size([2, 1, 2])

一方、[None]は常に新しい軸を先頭(axis 0)に追加します。ただし、NumPyにはnp.expand_dims()関数があり、これを使用すると任意の位置に次元を追加できます。

import numpy as np

w = np.array([[1, 2], [3, 4]])
print(w.shape)  # (2, 2)

w_expanded_0 = np.expand_dims(w, axis=0)
print(w_expanded_0.shape)  # (1, 2, 2)

w_expanded_1 = np.expand_dims(w, axis=1)
print(w_expanded_1.shape)  # (2, 1, 2)

4. パフォーマンスの考慮

一般的に、.unsqueeze()[None](またはnp.expand_dims())の間にパフォーマンスの大きな差はありません。しかし、大規模なデータセットや複雑なモデルを扱う場合、わずかな違いが積み重なって影響を与える可能性があります。

PyTorchを使用している場合は.unsqueeze()を、NumPyを使用している場合は[None]np.expand_dims()を使用するのが自然で効率的です。

まとめ ~.unsqueeze(0)[None]の実践的理解~

今回は、.unsqueeze(0)[None]の用法について詳しく解説しました。

問題の本質は、PyTorchとNumPyの混在にありますが、コードを書く上では、どちらの「世界」にいるのかを常に意識することが大切ですね。

コードを読む際には、.unsqueeze(0)が登場したら「ここからPyTorchでの次元追加だな」と考え、[None]を見たら「まだNumPyの領域にいるな」と理解するとよいでしょう。

使用シーンの違いも重要なポイントです。.unsqueeze(0)は多くの場合、1件データのモデル投入の直前に「緊急的な」次元追加として用いられます。そのため、モデル投入直前でよく目にすることになります。一方、[None]による次元追加は、通常モデル投入よりもずっと前の段階、つまりまだNumPy操作のフェーズで行われることが多いです。その後、モデル投入直前でPyTorchテンソルへの変換とGPUへの送り込みが行われるというパターンもよく見かけます。

これらの操作を見かけたら、まずは「バッチ次元追加かな?」と推測してみるのが良いでしょう。バッチ処理のニーズで使われることが多いためです。ただし、必ずしもバッチ次元の追加だけでなく、例えば画像処理ではチャンネル次元の追加に使われることもあるので、コンテキストをよく確認することが大切です。

結論として、.unsqueeze(0)[None]の違いを理解し、適切に使い分けることで、より明確で効率的なコードを書くことができます。また、これらの操作を見かけたときは「バッチ次元の追加かもしれない」と考えつつ、常にコンテキストを確認する習慣をつけることで、コードの意図をより深く理解できるようになるでしょう。

Read more

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部
LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

LLM推論基盤プロビジョニング講座 第1回 基本概念と推論速度

こんにちは! 本日は LLMサービスの自社構築する際の推論基盤プロビジョニング、GPUプロビジョニングについて数回にわけて解説いたします。 はじめに LLMの進化に伴い、ChatGPTやClaudeといったパブリックなLLMの活用は企業においても急速に広がってきました。しかし先進的な企業はこれらの汎用LLMに加えて、「領域特化型」「ドメイン特化型」といった専用LLMの構築へと歩みを進めています。こうした動きの背景には、企業固有の専門知識への対応力強化と情報セキュリティの確保という二つの重要なニーズがあります。 一般的なパブリックLLMでは対応できない企業固有の専門知識や機密情報の取り扱いが必要なケースが増えているため、自社LLMの構築や自社サーバーでの運用を検討する企業が急増しています。特に金融、医療、製造、法務といった専門性の高い領域では、業界特化型の独自LLMが競争優位性をもたらすと認識されています。 しかし、業界特化型のLLMを自社で運用することは簡単ではありません。自社運用を決断した場合、まず最初に取り組むべきは適切な推論環境の整備です。オンプレミス環境を構築するに

By Qualiteg コンサルティング