【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い

【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い
Photo by Merve Sehirli Nasir / Unsplash

今日は、 unsqueeze(0) の解説しつつ、私たちがよく直面する「あるある」な問題についてもちょこっと話してみたいと思います。

「value.unsqueeze(0)」と「value[None]」 の見分けついていますか?


はい、前者は主に PyTorch、後者は NumPyでの操作の違いです。

でもどちらも、ぱっとみは、先頭に新しく次元を追加する操作なので、コードをちらっとみただけではわからないことがありますよね。

なぜかというと、ディープラーニング系のプログラミングでは PyTorchのテンソルと、NumPyの配列操作がかなり入り混じるからです。

そう、今日の話題はPyTorchとNumPyのコードが入り乱れて、どっちの配列(テンソル)を扱っているのわけワカメになる問題です。

ちなみに、話題のテーマをブラさないように PyTorchでは 先頭に新しい次元を追加するときに unsqueeze(0) だけでなく [None] も使えてしまいますが、いったん[None]は NumPy で主に使用する操作という前提で説明させてくださいませ。^^;

これに対する当社なりの処方箋は、また別投稿をしたいとおもいますが、両者が無邪気に入り混じらないように、PyTorchとNumPyのコードをなるべく分離するようにしています。例えば「同一関数、メソッド内はPyTorchかNumPyに寄せる」、や、「GPU投入寸前までPyTorchテンソル化をガマンしてNumPyでがんばる」など、(涙ぐましい?)現場の工夫をしています^^

NumPy系の変数名には「なんちゃら_numpy」「なんちゃら_tensor」のようにするなど、あまりにも紛らわしいときには、行っていますが、型宣言のゆるいPythonコーディングの慣例上、同一変数名なのにNumPyからPyTorchにいつのまにか変わっていた、なんていう外部コードも大量にあり、なかなか難しいですね。

PyTorchとNumPyが入り乱れる世界 ~機械学習プロジェクトを進めていると、こんな経験ありませんか?

  • データの前処理はNumPyで行っていたのに、モデルに入力するときにはPyTorchのテンソルに変換しなければならない。
  • モデルから出力されたPyTorchのテンソルを、可視化のためにNumPy配列に戻す。
  • そして気づいたら、コード内でNumPyとPyTorchの関数が混在している...

これって、まるでプログラミング言語のバベルの塔ですよね。

今回は、PyTorchの.unsqueeze(0)メソッドとNumPyの[None]インデックスの違いについて詳しく見ていきましょう。一見似ているこれらの操作ですが、実は重要な違いがあります。

1. 基本的な違い

まず、最も基本的な違いは、冒頭でふれたとおり、

  • .unsqueeze(0): PyTorchのテンソルに使用されるメソッドです。
  • [None]: NumPy配列やPythonのリストに使用されるインデックス操作です。
    (コラムに書きましたが、実はPyTorchでも使えちゃいますが、頭に次元追加する操作は PyTorchでは unsqueeze(0)、おしりに次元追加する操作はunsqueeze(-1)でやるのが可読性や操作意図のわかりやすからオススメです)

2. 動作の詳細

.unsqueeze(0)

PyTorchの.unsqueeze(0)メソッドは、テンソルの0次元目(先頭)に新しい次元を追加します。これは、バッチ処理のためにデータを準備する際によく使用されます。1件だけのデータを学習モデルに突っ込みたいときも、「バッチ次元」を求められることが常なので unsqueeze(0) は頻発するコードだとおもいます。

import torch

x = torch.tensor([1, 2, 3])
print(x.shape)  # torch.Size([3])

x_unsqueezed = x.unsqueeze(0)
print(x_unsqueezed.shape)  # torch.Size([1, 3])

[None]

NumPyの[None]インデックスは、配列に新しい軸を追加します。これも実質的に次元を1つ増やすことになります。

例:

import numpy as np

y = np.array([1, 2, 3])
print(y.shape)  # (3,)

y_expanded = y[None]
print(y_expanded.shape)  # (1, 3)

3. 柔軟性の違い

.unsqueeze(n)メソッドは、引数nを変えることで任意の位置に次元を追加できる柔軟性があります。

例:

import torch

z = torch.tensor([[1, 2], [3, 4]])
print(z.shape)  # torch.Size([2, 2])

z_unsqueezed_0 = z.unsqueeze(0)
print(z_unsqueezed_0.shape)  # torch.Size([1, 2, 2])

z_unsqueezed_1 = z.unsqueeze(1)
print(z_unsqueezed_1.shape)  # torch.Size([2, 1, 2])

一方、[None]は常に新しい軸を先頭(axis 0)に追加します。ただし、NumPyにはnp.expand_dims()関数があり、これを使用すると任意の位置に次元を追加できます。

import numpy as np

w = np.array([[1, 2], [3, 4]])
print(w.shape)  # (2, 2)

w_expanded_0 = np.expand_dims(w, axis=0)
print(w_expanded_0.shape)  # (1, 2, 2)

w_expanded_1 = np.expand_dims(w, axis=1)
print(w_expanded_1.shape)  # (2, 1, 2)

4. パフォーマンスの考慮

一般的に、.unsqueeze()[None](またはnp.expand_dims())の間にパフォーマンスの大きな差はありません。しかし、大規模なデータセットや複雑なモデルを扱う場合、わずかな違いが積み重なって影響を与える可能性があります。

PyTorchを使用している場合は.unsqueeze()を、NumPyを使用している場合は[None]np.expand_dims()を使用するのが自然で効率的です。

まとめ ~.unsqueeze(0)[None]の実践的理解~

今回は、.unsqueeze(0)[None]の用法について詳しく解説しました。

問題の本質は、PyTorchとNumPyの混在にありますが、コードを書く上では、どちらの「世界」にいるのかを常に意識することが大切ですね。

コードを読む際には、.unsqueeze(0)が登場したら「ここからPyTorchでの次元追加だな」と考え、[None]を見たら「まだNumPyの領域にいるな」と理解するとよいでしょう。

使用シーンの違いも重要なポイントです。.unsqueeze(0)は多くの場合、1件データのモデル投入の直前に「緊急的な」次元追加として用いられます。そのため、モデル投入直前でよく目にすることになります。一方、[None]による次元追加は、通常モデル投入よりもずっと前の段階、つまりまだNumPy操作のフェーズで行われることが多いです。その後、モデル投入直前でPyTorchテンソルへの変換とGPUへの送り込みが行われるというパターンもよく見かけます。

これらの操作を見かけたら、まずは「バッチ次元追加かな?」と推測してみるのが良いでしょう。バッチ処理のニーズで使われることが多いためです。ただし、必ずしもバッチ次元の追加だけでなく、例えば画像処理ではチャンネル次元の追加に使われることもあるので、コンテキストをよく確認することが大切です。

結論として、.unsqueeze(0)[None]の違いを理解し、適切に使い分けることで、より明確で効率的なコードを書くことができます。また、これらの操作を見かけたときは「バッチ次元の追加かもしれない」と考えつつ、常にコンテキストを確認する習慣をつけることで、コードの意図をより深く理解できるようになるでしょう。

Read more

ディープラーニングにおけるEMA(Exponential Moving Average)

ディープラーニングにおけるEMA(Exponential Moving Average)

こんにちは! 本日は、画像生成、動画生成モデルなどで重要な役割を果たしている EMA ※について解説してみたいとおもいます! 当社のAIアバター動画生成サービス「MotionVox™」でも役立っています! といっても、画像生成のための専用技術というわけではなく、学習と推論(生成系も含む)というディープラーニングの運用の中で昨今かなり重宝されるテクニックとなっておりますので、基礎から実装までみていきたいとおもいます。 ※EMAの読み方は私はエマと呼んでますが、イーエムエーって言ってる人もいます。どっちでもいいでしょう。 EMA の基礎知識 EMA(Exponential Moving Average=指数移動平均)は、ざっくりいえばモデルの重みを平均化する手法です。 実は株価分析などでも使われている古くからある概念なのですが、ディープラーニングでは比較的最近になって「あ、これ結構使えるんじゃね?」と重要性が認識されるようになりました。 (”EMA”に限らず、理論の積み上げではなく「やってみたら、使えんじゃん」っていうのがかなり多いのがディープラーニング界隈のもはや常識でし

By Qualiteg 研究部
TOKYO DIGICONX 「MotionVox™」出展レポート

TOKYO DIGICONX 「MotionVox™」出展レポート

こんにちは! 2025年1月9日~11日に東京ビッグサイトにて開催された TOKYO DIGICONX に出展してまいりました。 開催中3日間の様子を簡単にレポートいたします! TOKYO DIGICONX TOKYO DIGICONX は東京ビッグサイト南3・4ホールにて開催で、正式名称は『TOKYO XR・メタバース&コンテンツ ビジネスワールド』ということで、xR・メタバース・コンテンツ・AIと先端テクノロジーが集まる展示会です 「Motion Vox™」のお披露目を行いました 当社からは、新サービス「Motion Vox™」を中心とした展示をさせていただきました MotionVox™は動画内の顔と声を簡単にAIアバター動画に変換できるAIアバター動画生成サービスです。 自分で撮影した動画をアップロードし、変換したい顔と声を選ぶだけの3ステップで完了。特別な機材は不要で、自然な表情とリップシンクを実現。 社内研修やYouTube配信、ドキュメンタリー制作など、幅広い用途で活用できます。 当社ブースの様子 「MotionVox™」の初出展とい

By Qualiteg ビジネス開発本部 | マーケティング部
【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

【本日開催】TOKYO DIGICONX で「MotionVox」を出展~リアルを纏う、AIアバター~

こんにちは! 本日(2025年1月9日)より東京ビックサイトにて開催されている「TOKYO DIGICONX」に、フォトリアリスティック(Photorealistic Avater)な次世代アバター生成AI「MotionVox」を出展しています! XR・メタバース・AIと先端テクノロジーが集まる本展示会で、ビジネス向け次世代AI動画生成ツールとしてMotionVox™をご紹介させていただきます。 MotionVox™とは MotionVox™は、あなたの表情や発話を魅力的なアバターが完全再現する動画生成AIです。まるで本物の人間がそこにいるかのような自然な表情と圧倒的な存在感で、新しい表現の可能性を切り開きます。 主な特徴 * フォトリアリスティックな高品質アバター * 高再現度の表情同期 * プロフェッショナルなリップシンク * カスタマイズ可能なボイスチェンジ機能 * 簡単な操作性 * プライバシーの完全保護 多様な用途に対応 MotionVoxは、以下のようなさまざまなビジネスシーンで活用いただけます! * 動画配信やVTuber活動 * S

By Qualiteg ビジネス開発本部 | マーケティング部
[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

[AI新規事業創出]Qualitegセレクション:ビジネスモデル設計①ビジネスモデル図

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 「新規事業のビジネスモデル図の描き方 〜実践で活かせる具体的なコツ〜」 新規事業開発のコンサルティングをさせていただいておりますとクライアント企業様の現場で、「ビジネスモデル図をどう描けばいいの?」という質問をよく頂きます。 実は私も最初は悩んだのですが、数々の失敗と成功を経て、効果的なビジネスモデル図の描き方が分かってきました。今回は、その実践的なコツをお伝えしていきます。 なぜビジネスモデル図が重要なのか ビジネスモデル図は、単なる図解ではありません。これは、自分のビジネスアイデアを「検証可能な形」に落とし込むための重要なツールです。 上申の際にステークホルダーの説明をするのに使うこともできます。また、アイディア創出後のマネタイズ検討の場合も情報

By Join us, Michele on Qualiteg's adventure to innovation