【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い

【極めればこのテンソル操作 】tensor.unsqueeze(0)と array[None] の違い
Photo by Merve Sehirli Nasir / Unsplash

今日は、 unsqueeze(0) の解説しつつ、私たちがよく直面する「あるある」な問題についてもちょこっと話してみたいと思います。

「value.unsqueeze(0)」と「value[None]」 の見分けついていますか?


はい、前者は主に PyTorch、後者は NumPyでの操作の違いです。

でもどちらも、ぱっとみは、先頭に新しく次元を追加する操作なので、コードをちらっとみただけではわからないことがありますよね。

なぜかというと、ディープラーニング系のプログラミングでは PyTorchのテンソルと、NumPyの配列操作がかなり入り混じるからです。

そう、今日の話題はPyTorchとNumPyのコードが入り乱れて、どっちの配列(テンソル)を扱っているのわけワカメになる問題です。

ちなみに、話題のテーマをブラさないように PyTorchでは 先頭に新しい次元を追加するときに unsqueeze(0) だけでなく [None] も使えてしまいますが、いったん[None]は NumPy で主に使用する操作という前提で説明させてくださいませ。^^;

これに対する当社なりの処方箋は、また別投稿をしたいとおもいますが、両者が無邪気に入り混じらないように、PyTorchとNumPyのコードをなるべく分離するようにしています。例えば「同一関数、メソッド内はPyTorchかNumPyに寄せる」、や、「GPU投入寸前までPyTorchテンソル化をガマンしてNumPyでがんばる」など、(涙ぐましい?)現場の工夫をしています^^

NumPy系の変数名には「なんちゃら_numpy」「なんちゃら_tensor」のようにするなど、あまりにも紛らわしいときには、行っていますが、型宣言のゆるいPythonコーディングの慣例上、同一変数名なのにNumPyからPyTorchにいつのまにか変わっていた、なんていう外部コードも大量にあり、なかなか難しいですね。

PyTorchとNumPyが入り乱れる世界 ~機械学習プロジェクトを進めていると、こんな経験ありませんか?

  • データの前処理はNumPyで行っていたのに、モデルに入力するときにはPyTorchのテンソルに変換しなければならない。
  • モデルから出力されたPyTorchのテンソルを、可視化のためにNumPy配列に戻す。
  • そして気づいたら、コード内でNumPyとPyTorchの関数が混在している...

これって、まるでプログラミング言語のバベルの塔ですよね。

今回は、PyTorchの.unsqueeze(0)メソッドとNumPyの[None]インデックスの違いについて詳しく見ていきましょう。一見似ているこれらの操作ですが、実は重要な違いがあります。

1. 基本的な違い

まず、最も基本的な違いは、冒頭でふれたとおり、

  • .unsqueeze(0): PyTorchのテンソルに使用されるメソッドです。
  • [None]: NumPy配列やPythonのリストに使用されるインデックス操作です。
    (コラムに書きましたが、実はPyTorchでも使えちゃいますが、頭に次元追加する操作は PyTorchでは unsqueeze(0)、おしりに次元追加する操作はunsqueeze(-1)でやるのが可読性や操作意図のわかりやすからオススメです)

2. 動作の詳細

.unsqueeze(0)

PyTorchの.unsqueeze(0)メソッドは、テンソルの0次元目(先頭)に新しい次元を追加します。これは、バッチ処理のためにデータを準備する際によく使用されます。1件だけのデータを学習モデルに突っ込みたいときも、「バッチ次元」を求められることが常なので unsqueeze(0) は頻発するコードだとおもいます。

import torch

x = torch.tensor([1, 2, 3])
print(x.shape)  # torch.Size([3])

x_unsqueezed = x.unsqueeze(0)
print(x_unsqueezed.shape)  # torch.Size([1, 3])

[None]

NumPyの[None]インデックスは、配列に新しい軸を追加します。これも実質的に次元を1つ増やすことになります。

例:

import numpy as np

y = np.array([1, 2, 3])
print(y.shape)  # (3,)

y_expanded = y[None]
print(y_expanded.shape)  # (1, 3)

3. 柔軟性の違い

.unsqueeze(n)メソッドは、引数nを変えることで任意の位置に次元を追加できる柔軟性があります。

例:

import torch

z = torch.tensor([[1, 2], [3, 4]])
print(z.shape)  # torch.Size([2, 2])

z_unsqueezed_0 = z.unsqueeze(0)
print(z_unsqueezed_0.shape)  # torch.Size([1, 2, 2])

z_unsqueezed_1 = z.unsqueeze(1)
print(z_unsqueezed_1.shape)  # torch.Size([2, 1, 2])

一方、[None]は常に新しい軸を先頭(axis 0)に追加します。ただし、NumPyにはnp.expand_dims()関数があり、これを使用すると任意の位置に次元を追加できます。

import numpy as np

w = np.array([[1, 2], [3, 4]])
print(w.shape)  # (2, 2)

w_expanded_0 = np.expand_dims(w, axis=0)
print(w_expanded_0.shape)  # (1, 2, 2)

w_expanded_1 = np.expand_dims(w, axis=1)
print(w_expanded_1.shape)  # (2, 1, 2)

4. パフォーマンスの考慮

一般的に、.unsqueeze()[None](またはnp.expand_dims())の間にパフォーマンスの大きな差はありません。しかし、大規模なデータセットや複雑なモデルを扱う場合、わずかな違いが積み重なって影響を与える可能性があります。

PyTorchを使用している場合は.unsqueeze()を、NumPyを使用している場合は[None]np.expand_dims()を使用するのが自然で効率的です。

まとめ ~.unsqueeze(0)[None]の実践的理解~

今回は、.unsqueeze(0)[None]の用法について詳しく解説しました。

問題の本質は、PyTorchとNumPyの混在にありますが、コードを書く上では、どちらの「世界」にいるのかを常に意識することが大切ですね。

コードを読む際には、.unsqueeze(0)が登場したら「ここからPyTorchでの次元追加だな」と考え、[None]を見たら「まだNumPyの領域にいるな」と理解するとよいでしょう。

使用シーンの違いも重要なポイントです。.unsqueeze(0)は多くの場合、1件データのモデル投入の直前に「緊急的な」次元追加として用いられます。そのため、モデル投入直前でよく目にすることになります。一方、[None]による次元追加は、通常モデル投入よりもずっと前の段階、つまりまだNumPy操作のフェーズで行われることが多いです。その後、モデル投入直前でPyTorchテンソルへの変換とGPUへの送り込みが行われるというパターンもよく見かけます。

これらの操作を見かけたら、まずは「バッチ次元追加かな?」と推測してみるのが良いでしょう。バッチ処理のニーズで使われることが多いためです。ただし、必ずしもバッチ次元の追加だけでなく、例えば画像処理ではチャンネル次元の追加に使われることもあるので、コンテキストをよく確認することが大切です。

結論として、.unsqueeze(0)[None]の違いを理解し、適切に使い分けることで、より明確で効率的なコードを書くことができます。また、これらの操作を見かけたときは「バッチ次元の追加かもしれない」と考えつつ、常にコンテキストを確認する習慣をつけることで、コードの意図をより深く理解できるようになるでしょう。

Read more

エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部