[ChatStream] Web API エンドポイントの実装

[ChatStream] Web API エンドポイントの実装

こんにちは! (株)Qualiteg プロダクト開発部 です!

本稿では、 ChatStream を FastAPI の Web API として実装する方法についてご説明いたします!

エンドポイントの実装

/chat_stream という URL パスに、ストリーミングチャット用のWebエンドポイントをつくるには
以下のように handle_chat_stream_request を呼び出します。

これだけで、ユーザーからのリクエストは 文章生成の同時実行数を制御したストリーミングチャットの実装は完了です

@app.post("/chat_stream")
async def stream_api(request: Request):
    # handling FastAPI/Starlette's Request
    response = await chat_stream.handle_chat_stream_request(request)
    return response

メッセージインターセプト

FastAPI/Starlette を利用している場合、エンドポイントで await request.body()await request.json() を実行すると、
リクエストストリームを消費(consume)してしまうため、 ChatStream にリクエストを委譲する前にリクエストをインターセプトをする場合は以下のように実装します

import json
from fastapi import FastAPI, Request

@app.post("/chat_stream")
async def stream_api(request: Request):

    # Request を インターセプトする場合
    request_body = await request.body()
    data = json.loads(request_body)
    
    user_input = data["user_input"]
    regenerate = data["regenerate"]

    print(f"user_input:{user_input} regenerate:{regenerate}")
    
    # インターセプトした場合は `request_body` を指定する
    response = await chat_stream.handle_chat_stream_request(request, request_body)

    return response

チャットストリームの送出完了のコールバックを受け取る

ChatStream では、ストリーミングレスポンスを行うため、エンドポイントで return reponse を行ったタイミングが文章生成処理の終了ではありません。

そこで、文章生成の完了のタイミングをキャッチしたい場合、
エンドポイントの実装で、 handle_chat_stream_request の引数 callback にコールバック関数を指定します。

文章生成が完了すると、指定したコールバック関数が呼び出されます

@app.post("/chat_stream")
async def stream_api(request: Request):

    def callback_func(request, message):
        # 文章生成が終了したとき
        
        # ここでは、セッションに格納されている ChatPrompt を取得して、これまでの会話履歴をもとにプロンプトを生成する例
        session_mgr = getattr(request.state, "session", None)
        session = session_mgr.get_session()
        chat_prompt = session.get("chat_prompt")
        print(chat_prompt.create_prompt())

    pass

    response = await chat_stream.handle_chat_stream_request(request, callback=callback_func)

    return response

文章生成終了時のコールバック関数のパラメータ message の取り得る値と意味

message の値 説明
success ストリームがクライアントに向け正常に送出された
client_disconnected_while_streaming ストリーム送出中にクライアントから切断された
client_disconnected_before_streaming ストリーム送出前にクライアントから切断されていた
unknown_error_occurred ストリーム送出中に予期せぬエラーが発生した

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部