2025年版 NVIDIA GPU まとめ

2025年版 NVIDIA GPU まとめ
Photo by Lucas Kepner / Unsplash

最新のGPU一覧をまとめました

関連エントリー:https://blog.qualiteg.com/nvidia-gpu-capability-level/

SM_100 (Blackwell)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA B100 16,896基 最大192GB 2024年発表 PCIe Gen6: 256GB/s パッシブ -
NVIDIA B200 33,792基 (16,896 × 2) 最大192GB 2024年発表 PCIe Gen6: 256GB/s パッシブ -
NVIDIA GB200 Grace Blackwell Superchip 67,584基 (33,792 × 2) 最大384GB 2024年発表 - パッシブ -

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 5090 21,760基 32GB GDDR7 2025年 PCIe Gen5 2スロット (内排気) -
GeForce RTX 5080 10,752基 16GB GDDR7 2025年 PCIe Gen5 2スロット (内排気) -

SM_90 (Hopper)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA H100 16,896基 (SXM5版) 80GB HBM3 2022年 PCIe 5.0 x16 パッシブクーラー SXM5版は最大700W程度 (PCIe版はTDP 350W程度)
NVIDIA H100 NVL - 188GB HBM3 2023年頃 PCIe Gen5 128GB/s パッシブ -
NVIDIA H200 - 141GB HBM3e 2023年発表 PCIe Gen5 128GB/s パッシブ -
NVIDIA GH200 Grace Hopper Superchip - 96GB HBM3/144GB HBM3e 2023年頃 - パッシブ/水冷 -

SM_89 (Ada Lovelace)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA L4 7,424基 24GB GDDR6 2023年初頭 PCIe 4.0 x16 パッシブ TDP 72W
NVIDIA L40 18,176基 48GB GDDR6 ECC 2022年後半 PCIe 4.0 x16 パッシブクーラー 300W (最大320W設定可とも)
NVIDIA L40S 18,176基 48GB GDDR6 ECC 2023年頃 PCIe 4.0 x16 パッシブ 最大300〜320W相当?
RTX 6000 Ada Generation 18,176基 48GB GDDR6 ECC 2022年末 PCIe 4.0 x16 ブロワーファン(外排気) TDP 300W
RTX 5000 Ada 12,800基 32GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ(外排気) TDP 250W
RTX 4500 Ada 7,680基 24GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ(外排気) TDP 210W
RTX 4000 Ada 6,144基 20GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ(シングルスロット) TDP 130W
RTX 2000 Ada 2,816基 16GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ TDP 70W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 4090 16,384基 24GB GDDR6X 2022年10月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 450W
GeForce RTX 4080 9,728基 16GB GDDR6X 2022年11月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 320W
GeForce RTX 4070 Ti 7,680基 12GB GDDR6X 2023年1月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 285W
GeForce RTX 4070 5,888基 12GB GDDR6X 2023年4月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 200W
GeForce RTX 4060 Ti 4,352基 8GB/16GB GDDR6 2023年5月/7月 PCIe 4.0 x8 デュアル軸ファン(内排気) TDP 160W
GeForce RTX 4060 3,072基 8GB GDDR6 2023年6月 PCIe 4.0 x8 デュアル軸ファン(内排気) TDP 115W
GeForce RTX 4050 - 6GB GDDR6 公式発表前 - - -

SM_86 / SM_87 (Ampere)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA A100 6,912基 40GB/80GB HBM2(e) 2020年 PCIe 4.0 x16 パッシブ SXM4 400W, PCIe版 250W
NVIDIA A100X - 80GB HBM2e 2021-2022年 PCIe Gen4 パッシブ -
NVIDIA A30 3,584基 24GB HBM2 2021年 PCIe 4.0 x16 パッシブ (2スロット) TDP 165W
NVIDIA A30X - 24GB HBM2e 2021-2022年 PCIe Gen4 パッシブ -
NVIDIA A40 10,752基 48GB GDDR6 ECC 2020-2021年頃 PCIe 4.0 x16 ブロワーファン/パッシブ 300W
NVIDIA A10 9,216基 24GB GDDR6 2021年 PCIe 4.0 x16 パッシブ/ブロワー(外排気) 150W
NVIDIA A16 (GPUあたり)1,280基 x4 64GB GDDR6 (16GB x4) 2021年 PCIe 4.0 x16 パッシブ (マルチGPU基板) 250W
NVIDIA A2 Tensor Core 1,280基 16GB GDDR6 2021年 PCIe 4.0 x8 パッシブ小型 60W
NVIDIA A800 40GB (中国向け) 6,912基 40GB HBM2 2022年頃 PCIe 4.0 x16 パッシブ 250W(推定、A100 40GB相当)
NVIDIA RTX A6000 10,752基 48GB GDDR6 ECC 2020-2021年頃 PCIe 4.0 x16 アクティブ 300W
NVIDIA RTX A5500 10,240基 24GB GDDR6 2021-2022年 PCIe 4.0 x16 アクティブ 230W
NVIDIA RTX A4500 7,168基 20GB GDDR6 2021-2022年 PCIe 4.0 x16 アクティブ 200W
NVIDIA RTX A4000 6,144基 16GB GDDR6 ECC 2021年 PCIe 4.0 x16 単一ブロワーファン (外排気) 140W
NVIDIA RTX A2000 3,328基 12GB GDDR6 2021年 PCIe 4.0 x16 アクティブ(小型) 70W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 3090 10,496基 24GB GDDR6X 2020年9月 PCIe 4.0 x16 2ファン (内排気) TDP 350W
GeForce RTX 3080 8,704基 10GB/12GB GDDR6X 2020年9月/2022年1月 PCIe 4.0 x16 2ファン (内排気) TDP 320W(12GB版350W)
GeForce RTX 3070 5,888基 8GB GDDR6 2020年10月 PCIe 4.0 x16 2ファン (内排気) TDP 220W
GeForce RTX 3060 3,584基 12GB GDDR6 2021年2月 PCIe 4.0 x16 2ファン (内排気) TDP 170W
GeForce RTX 3050 2,560基 8GB GDDR6 2022年1月 PCIe 4.0 x8 2ファン (内排気) TDP 130W

SM_75 (Turing)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Quadro RTX 8000 4,608基 48GB GDDR6 2018年末頃 PCIe 3.0 x16 ブロワーファン (外排気) TDP 295W
Quadro RTX 6000 4,608基 24GB GDDR6 2018年末頃 PCIe 3.0 x16 ブロワーファン (外排気) TDP 250W
Quadro RTX 5000 3,072基 16GB GDDR6 2019年 PCIe 3.0 x16 ブロワーファン (外排気) TDP 265W
Quadro RTX 4000 2,304基 8GB GDDR6 2018年末頃 PCIe 3.0 x16 シングルファン(軸流式) TDP 160W
T4 2,560基 16GB GDDR6 2018年 PCIe 3.0 x16 パッシブ (ハーフハイト) 70W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 2080 Ti 4,352基 11GB GDDR6 2018年9月 PCIe 3.0 x16 デュアルファン (内排気) TDP 250W
GeForce RTX 2070 2,304基 8GB GDDR6 2018年10月 PCIe 3.0 x16 デュアルファン (内排気) TDP 175W
GeForce GTX 1660 Ti 1,536基 6GB GDDR6 2019年2月 PCIe 3.0 x16 (FEなし、AIBのみ) TDP 120W

SM_70 / SM_72 (Volta)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla V100 5,120基 16GB/32GB HBM2 2017年 PCIe 3.0 x16 パッシブ (サーバー向け) SXM2 300W, PCIe版 250W
Quadro GV100 5,120基 32GB HBM2 2018年 PCIe 3.0 x16 ブロワーファン(外排気) 250W
Titan V 5,120基 12GB HBM2 2017年 PCIe 3.0 x16 ブロワー(外排気) 250W
Xavier NX (SoC) 384基 8GB LPDDR4x 2019-2020年頃 - (SoC) - (組込み向け) 10〜15W (最大15Wモード)

SM_60 / SM_61 / SM_62 (Pascal)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla P100 3,584基 12GB/16GB HBM2 2016年 PCIe 3.0 x16 パッシブ (サーバー向け) SXM2 300W, PCIe版250W
Quadro GP100 3,584基 16GB HBM2 2017年 PCIe 3.0 x16 ブロワーファン(外排気) 235W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce GTX 1080 2,560基 8GB GDDR5X 2016年5月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 180W
GeForce GTX 1070 1,920基 8GB GDDR5 2016年6月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 150W
GeForce GTX 1060 (6GB) 1,280基 (6GB版) / 1,152基 (3GB) 3GB/6GB GDDR5 2016年7-8月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 120W (6GB版)
GeForce GTX 1050 640基 2GB/3GB GDDR5 2016年10月 PCIe 3.0 x16 (FEなし、AIB各社) 75W〜 TDP 75W前後
GeForce GTX 1030 384基 2GB GDDR5 2017年5月 PCIe 3.0 x4/x8 超小型ファン/ファンレス TDP 30W
GeForce GT 1010 256基 2GB GDDR5 2021-2022年頃 PCIe 3.0 x4? (OEM向け) -
Titan Xp 3,840基 12GB GDDR5X 2017年4月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 250W

SM_50 / SM_52 / SM_53 (Maxwell)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla M40 3,072基 (GM200) 12GB GDDR5 2015年 PCIe 3.0 x16 パッシブ (サーバー用) 250W
Tesla M60 (Dual) (1GPU)2,048基 x2 合計16GB (8GB x2) 2015年 PCIe 3.0 x16 パッシブ (2GPU基板) 300W
Tesla M4 1,024基 (GM206) 4GB GDDR5 2016年 PCIe 3.0 x8 パッシブ (LowProfile) 50W〜75W (構成により)
Quadro M6000 3,072基 (GM200) 12GB/24GB GDDR5 2015年 PCIe 3.0 x16 ブロワーファン(外排気) 250W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce GTX 980 Ti 2,816基 6GB GDDR5 2015年6月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 250W
GeForce GTX Titan X (初代Maxwell) 3,072基 12GB GDDR5 2015年3月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 250W
GeForce GTX 980 2,048基 4GB GDDR5 2014年9月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 165W
GeForce GTX 970 1,664基 4GB GDDR5(3.5+0.5GB) 2014年9月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 145W

SM_35 / SM_37 (Kepler)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla K40 2,880基 (GK110B) 12GB GDDR5 2013年 PCIe 3.0 x16 パッシブ (サーバー向け) TDP 235W
Tesla K80 (1GPUあたり)2,496基 x2 (GK210) 合計24GB(12GB x2) GDDR5 2014年 PCIe 3.0 x16 パッシブ (デュアルGPU基板) 300W

SM_20 (Fermi)

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GTX 480 (GF100) 480基 1.5GB GDDR5 2010年 PCIe 2.0 x16 ブロワーファン(外排気) TDP 250W
GTX 460 (GF104) 336基 768MB/1GB 2010年 PCIe 2.0 x16 ブロワーファン(外排気) TDP 150W〜160W
GTX 580 (GF110) 512基 1.5GB 2011年 PCIe 2.0 x16 ブロワーファン(外排気) TDP 244W
GT 630 (Fermi版) 96基 (GF108) 1-2GB 2012年 PCIe 2.0 x16 小型/ファンレスなど TDP 65W前後 (OEM向け)

Read more

フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

発話音声からリアルなリップシンクを生成する技術 第4回:LSTMの学習と限界、そしてTransformerへ

1. 位置損失 (L_position) - 口の形の正確さ 時間 口の開き 正解 予測 L_position = Σᵢ wᵢ × ||y_pred - y_true||² 各時点での予測値と正解値の差を計算。重要なパラメータ(顎の開き、口の開き)には大きな重みを付けます。 jaw_open: ×2.0 mouth_open: ×2.0 その他: ×1.0 2. 速度損失 (L_velocity) - 動きの速さ 時間 速度 t→t+1 v = y[t] -

By Qualiteg 研究部, Qualiteg コンサルティング