2025年版 NVIDIA GPU まとめ

2025年版 NVIDIA GPU まとめ
Photo by Lucas Kepner / Unsplash

最新のGPU一覧をまとめました

関連エントリー:https://blog.qualiteg.com/nvidia-gpu-capability-level/

SM_100 (Blackwell)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA B100 16,896基 最大192GB 2024年発表 PCIe Gen6: 256GB/s パッシブ -
NVIDIA B200 33,792基 (16,896 × 2) 最大192GB 2024年発表 PCIe Gen6: 256GB/s パッシブ -
NVIDIA GB200 Grace Blackwell Superchip 67,584基 (33,792 × 2) 最大384GB 2024年発表 - パッシブ -

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 5090 21,760基 32GB GDDR7 2025年 PCIe Gen5 2スロット (内排気) -
GeForce RTX 5080 10,752基 16GB GDDR7 2025年 PCIe Gen5 2スロット (内排気) -

SM_90 (Hopper)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA H100 16,896基 (SXM5版) 80GB HBM3 2022年 PCIe 5.0 x16 パッシブクーラー SXM5版は最大700W程度 (PCIe版はTDP 350W程度)
NVIDIA H100 NVL - 188GB HBM3 2023年頃 PCIe Gen5 128GB/s パッシブ -
NVIDIA H200 - 141GB HBM3e 2023年発表 PCIe Gen5 128GB/s パッシブ -
NVIDIA GH200 Grace Hopper Superchip - 96GB HBM3/144GB HBM3e 2023年頃 - パッシブ/水冷 -

SM_89 (Ada Lovelace)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA L4 7,424基 24GB GDDR6 2023年初頭 PCIe 4.0 x16 パッシブ TDP 72W
NVIDIA L40 18,176基 48GB GDDR6 ECC 2022年後半 PCIe 4.0 x16 パッシブクーラー 300W (最大320W設定可とも)
NVIDIA L40S 18,176基 48GB GDDR6 ECC 2023年頃 PCIe 4.0 x16 パッシブ 最大300〜320W相当?
RTX 6000 Ada Generation 18,176基 48GB GDDR6 ECC 2022年末 PCIe 4.0 x16 ブロワーファン(外排気) TDP 300W
RTX 5000 Ada 12,800基 32GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ(外排気) TDP 250W
RTX 4500 Ada 7,680基 24GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ(外排気) TDP 210W
RTX 4000 Ada 6,144基 20GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ(シングルスロット) TDP 130W
RTX 2000 Ada 2,816基 16GB GDDR6 ECC 2023-2024年 PCIe 4.0 x16 アクティブ TDP 70W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 4090 16,384基 24GB GDDR6X 2022年10月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 450W
GeForce RTX 4080 9,728基 16GB GDDR6X 2022年11月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 320W
GeForce RTX 4070 Ti 7,680基 12GB GDDR6X 2023年1月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 285W
GeForce RTX 4070 5,888基 12GB GDDR6X 2023年4月 PCIe 4.0 x16 デュアル軸ファン(内排気) TDP 200W
GeForce RTX 4060 Ti 4,352基 8GB/16GB GDDR6 2023年5月/7月 PCIe 4.0 x8 デュアル軸ファン(内排気) TDP 160W
GeForce RTX 4060 3,072基 8GB GDDR6 2023年6月 PCIe 4.0 x8 デュアル軸ファン(内排気) TDP 115W
GeForce RTX 4050 - 6GB GDDR6 公式発表前 - - -

SM_86 / SM_87 (Ampere)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
NVIDIA A100 6,912基 40GB/80GB HBM2(e) 2020年 PCIe 4.0 x16 パッシブ SXM4 400W, PCIe版 250W
NVIDIA A100X - 80GB HBM2e 2021-2022年 PCIe Gen4 パッシブ -
NVIDIA A30 3,584基 24GB HBM2 2021年 PCIe 4.0 x16 パッシブ (2スロット) TDP 165W
NVIDIA A30X - 24GB HBM2e 2021-2022年 PCIe Gen4 パッシブ -
NVIDIA A40 10,752基 48GB GDDR6 ECC 2020-2021年頃 PCIe 4.0 x16 ブロワーファン/パッシブ 300W
NVIDIA A10 9,216基 24GB GDDR6 2021年 PCIe 4.0 x16 パッシブ/ブロワー(外排気) 150W
NVIDIA A16 (GPUあたり)1,280基 x4 64GB GDDR6 (16GB x4) 2021年 PCIe 4.0 x16 パッシブ (マルチGPU基板) 250W
NVIDIA A2 Tensor Core 1,280基 16GB GDDR6 2021年 PCIe 4.0 x8 パッシブ小型 60W
NVIDIA A800 40GB (中国向け) 6,912基 40GB HBM2 2022年頃 PCIe 4.0 x16 パッシブ 250W(推定、A100 40GB相当)
NVIDIA RTX A6000 10,752基 48GB GDDR6 ECC 2020-2021年頃 PCIe 4.0 x16 アクティブ 300W
NVIDIA RTX A5500 10,240基 24GB GDDR6 2021-2022年 PCIe 4.0 x16 アクティブ 230W
NVIDIA RTX A4500 7,168基 20GB GDDR6 2021-2022年 PCIe 4.0 x16 アクティブ 200W
NVIDIA RTX A4000 6,144基 16GB GDDR6 ECC 2021年 PCIe 4.0 x16 単一ブロワーファン (外排気) 140W
NVIDIA RTX A2000 3,328基 12GB GDDR6 2021年 PCIe 4.0 x16 アクティブ(小型) 70W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 3090 10,496基 24GB GDDR6X 2020年9月 PCIe 4.0 x16 2ファン (内排気) TDP 350W
GeForce RTX 3080 8,704基 10GB/12GB GDDR6X 2020年9月/2022年1月 PCIe 4.0 x16 2ファン (内排気) TDP 320W(12GB版350W)
GeForce RTX 3070 5,888基 8GB GDDR6 2020年10月 PCIe 4.0 x16 2ファン (内排気) TDP 220W
GeForce RTX 3060 3,584基 12GB GDDR6 2021年2月 PCIe 4.0 x16 2ファン (内排気) TDP 170W
GeForce RTX 3050 2,560基 8GB GDDR6 2022年1月 PCIe 4.0 x8 2ファン (内排気) TDP 130W

SM_75 (Turing)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Quadro RTX 8000 4,608基 48GB GDDR6 2018年末頃 PCIe 3.0 x16 ブロワーファン (外排気) TDP 295W
Quadro RTX 6000 4,608基 24GB GDDR6 2018年末頃 PCIe 3.0 x16 ブロワーファン (外排気) TDP 250W
Quadro RTX 5000 3,072基 16GB GDDR6 2019年 PCIe 3.0 x16 ブロワーファン (外排気) TDP 265W
Quadro RTX 4000 2,304基 8GB GDDR6 2018年末頃 PCIe 3.0 x16 シングルファン(軸流式) TDP 160W
T4 2,560基 16GB GDDR6 2018年 PCIe 3.0 x16 パッシブ (ハーフハイト) 70W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce RTX 2080 Ti 4,352基 11GB GDDR6 2018年9月 PCIe 3.0 x16 デュアルファン (内排気) TDP 250W
GeForce RTX 2070 2,304基 8GB GDDR6 2018年10月 PCIe 3.0 x16 デュアルファン (内排気) TDP 175W
GeForce GTX 1660 Ti 1,536基 6GB GDDR6 2019年2月 PCIe 3.0 x16 (FEなし、AIBのみ) TDP 120W

SM_70 / SM_72 (Volta)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla V100 5,120基 16GB/32GB HBM2 2017年 PCIe 3.0 x16 パッシブ (サーバー向け) SXM2 300W, PCIe版 250W
Quadro GV100 5,120基 32GB HBM2 2018年 PCIe 3.0 x16 ブロワーファン(外排気) 250W
Titan V 5,120基 12GB HBM2 2017年 PCIe 3.0 x16 ブロワー(外排気) 250W
Xavier NX (SoC) 384基 8GB LPDDR4x 2019-2020年頃 - (SoC) - (組込み向け) 10〜15W (最大15Wモード)

SM_60 / SM_61 / SM_62 (Pascal)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla P100 3,584基 12GB/16GB HBM2 2016年 PCIe 3.0 x16 パッシブ (サーバー向け) SXM2 300W, PCIe版250W
Quadro GP100 3,584基 16GB HBM2 2017年 PCIe 3.0 x16 ブロワーファン(外排気) 235W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce GTX 1080 2,560基 8GB GDDR5X 2016年5月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 180W
GeForce GTX 1070 1,920基 8GB GDDR5 2016年6月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 150W
GeForce GTX 1060 (6GB) 1,280基 (6GB版) / 1,152基 (3GB) 3GB/6GB GDDR5 2016年7-8月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 120W (6GB版)
GeForce GTX 1050 640基 2GB/3GB GDDR5 2016年10月 PCIe 3.0 x16 (FEなし、AIB各社) 75W〜 TDP 75W前後
GeForce GTX 1030 384基 2GB GDDR5 2017年5月 PCIe 3.0 x4/x8 超小型ファン/ファンレス TDP 30W
GeForce GT 1010 256基 2GB GDDR5 2021-2022年頃 PCIe 3.0 x4? (OEM向け) -
Titan Xp 3,840基 12GB GDDR5X 2017年4月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 250W

SM_50 / SM_52 / SM_53 (Maxwell)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla M40 3,072基 (GM200) 12GB GDDR5 2015年 PCIe 3.0 x16 パッシブ (サーバー用) 250W
Tesla M60 (Dual) (1GPU)2,048基 x2 合計16GB (8GB x2) 2015年 PCIe 3.0 x16 パッシブ (2GPU基板) 300W
Tesla M4 1,024基 (GM206) 4GB GDDR5 2016年 PCIe 3.0 x8 パッシブ (LowProfile) 50W〜75W (構成により)
Quadro M6000 3,072基 (GM200) 12GB/24GB GDDR5 2015年 PCIe 3.0 x16 ブロワーファン(外排気) 250W

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GeForce GTX 980 Ti 2,816基 6GB GDDR5 2015年6月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 250W
GeForce GTX Titan X (初代Maxwell) 3,072基 12GB GDDR5 2015年3月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 250W
GeForce GTX 980 2,048基 4GB GDDR5 2014年9月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 165W
GeForce GTX 970 1,664基 4GB GDDR5(3.5+0.5GB) 2014年9月 PCIe 3.0 x16 ブロワーファン(外排気) TDP 145W

SM_35 / SM_37 (Kepler)

データセンター/プロ向け

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
Tesla K40 2,880基 (GK110B) 12GB GDDR5 2013年 PCIe 3.0 x16 パッシブ (サーバー向け) TDP 235W
Tesla K80 (1GPUあたり)2,496基 x2 (GK210) 合計24GB(12GB x2) GDDR5 2014年 PCIe 3.0 x16 パッシブ (デュアルGPU基板) 300W

SM_20 (Fermi)

GeForce

製品名 CUDAコア数 VRAM 発売年 PCIeバージョン 冷却方式 消費電力(最大/TDP)
GTX 480 (GF100) 480基 1.5GB GDDR5 2010年 PCIe 2.0 x16 ブロワーファン(外排気) TDP 250W
GTX 460 (GF104) 336基 768MB/1GB 2010年 PCIe 2.0 x16 ブロワーファン(外排気) TDP 150W〜160W
GTX 580 (GF110) 512基 1.5GB 2011年 PCIe 2.0 x16 ブロワーファン(外排気) TDP 244W
GT 630 (Fermi版) 96基 (GF108) 1-2GB 2012年 PCIe 2.0 x16 小型/ファンレスなど TDP 65W前後 (OEM向け)

Read more

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部