Node.jsのUUID生成を極める:crypto.randomUUID() vs 通常のUUID

Node.jsのUUID生成を極める:crypto.randomUUID() vs 通常のUUID
Photo by Towfiqu barbhuiya / Unsplash

こんにちは!

今回は、Webフロントで活躍するNode.jsでのUUID生成について、特にcrypto.randomUUID()と従来の方法の違いを解説します!

はじめに

UUIDは一意の識別子として広く使用されていますが、Node.jsには複数の生成方法があります。

crypto.randomUUID()の使用方法

import { randomUUID } from 'crypto';

const id = randomUUID();
console.log(id); // 例:'123e4567-e89b-12d3-a456-426614174000'

または、以下のように書いてもいいですね

import crypto from 'crypto';
const id= crypto.randomUUID();

主な特徴

  • 暗号学的に安全な乱数生成器を使用
  • 追加のパッケージインストールが不要
  • パフォーマンスが最適化済み
  • UUID v4形式を生成

従来のUUID生成方法

import { v4 as uuidv4 } from 'uuid';

const id = uuidv4();
console.log(id);

特徴

  • 複数のUUIDバージョンに対応
  • カスタマイズオプションが豊富
  • コミュニティでの実績が長い
  • NPMパッケージのインストールが必要

複数のUUIDバージョンを使用する場合

import { v1, v3, v4, v5 } from 'uuid';

const timeBasedId = v1();  // タイムベース
const nameBasedMD5Id = v3('hello', v3.DNS);  // 名前ベース(MD5)
const randomId = v4();  // ランダム
const nameBasedSHA1Id = v5('hello', v5.DNS);  // 名前ベース(SHA-1)

どちらを選ぶべき?

crypto.randomUUID()を選ぶケース

  • セキュリティが重要な場合
  • 依存関係を最小限に抑えたい場合
  • シンプルなUUID v4の生成で十分な場合

uuidパッケージを選ぶケース

  • 特定のUUIDバージョンが必要な場合
  • 生成プロセスをカスタマイズしたい場合
  • 下位バージョンのNode.jsとの互換性が必要な場合

まとめ

プロジェクトの要件に応じて、適切な方法を選択してください。特に理由がない場合は、組み込みのcrypto.randomUUID()を使用することをお勧めします。

Appendix:暗号学的に安全な乱数とは?

さて、暗号学的に安全な乱数生成器(Cryptographically Secure Random Number Generator: CSPRNG)とは何でしょうか?

「セキュリティ的に良い」だけでは、ちょっと物足りないかもしれませんのでこれについて、Appendixで具体的にみていきましょう。

基本的な特徴

暗号号学的に安全な乱数生成器とは、基本的には以下のような特徴があります

1.予測不可能性

  • 生成された乱数の次の値を予測することが実質的に不可能
  • これまでの出力からパターンを見つけることができない

2.均一な分布

  • すべての可能な値が同じ確率で出現
  • 偏りがない

一般的な乱数生成器との違い

例えば、JavaScriptのMath.random()との比較で見てみましょう:

// 一般的な乱数生成
const normal = Math.random();

// 暗号学的に安全な乱数生成
import { randomBytes } from 'crypto';
const secure = randomBytes(8).readBigUInt64BE() / BigInt(2 ** 64);

Math.random()の問題点

  • シード値から次の値が予測可能
  • 暗号用途には不適切
  • 擬似乱数生成アルゴリズムが比較的単純

crypto.randomUUID()の利点

  • OSの提供する暗号学的乱数源を使用(Linux の場合は /dev/urandom など)
  • 物理的なノイズソースを利用
  • 予測が極めて困難

実際のユースケース

暗号学的に安全な乱数が重要な場面:

  1. セキュリティトークンの生成
import { randomBytes } from 'crypto';
const secureToken = randomBytes(32).toString('hex');
  1. パスワードリセットトークン
import { randomUUID } from 'crypto';
const resetToken = randomUUID();
  1. 初期化ベクトル(IV)の生成
import { randomBytes } from 'crypto';
const iv = randomBytes(16); // AES-256用

実際の違いを視覚化

一般的な乱数生成器と暗号学的に安全な乱数生成器の違いを見てみましょう:

import { randomBytes } from 'crypto';

// 一般的な乱数列
const normalRandoms = Array.from(
  { length: 1000 }, 
  () => Math.random()
);

// 暗号学的に安全な乱数列
const secureRandoms = Array.from(
  { length: 1000 }, 
  () => randomBytes(8).readBigUInt64BE() / BigInt(2 ** 64)
);

一般的な乱数生成器は、短時間で大量の値を生成する必要がある場合に適していますが、予測可能性があるため、セキュリティが重要な用途には適していません。

一方、暗号学的に安全な乱数生成器は:

  • より多くのエントロピー(ランダム性)を持つ
  • 予測が実質的に不可能
  • 計算コストは高いが、セキュリティが保証される

これが、UUIDの生成においてcrypto.randomUUID()が推奨される理由です。特に認証トークンやセッションIDなど、セキュリティが重要な場面では、この予測不可能性が極めて重要になります。

Read more

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation
Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

Windows Terminal で「無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。」が出たときの対処法

何度か、WSL にいろんなバージョンのLinux を入れたり消したりしたときに遭遇した現象です ユーザー設定の読み込み中にエラーが発生しました 無効な "icon" を持つプロファイルが見つかりました。既定では、そのプロファイルにアイコンはありません。"icon" を設定するときは、値が画像への有効なファイルパスとなっていることをご確認ください。 が発生するときの原因と対象法のレポートです 原因 使われなくなったゾンビ・プロファイルがWindows Terminal (のキャッシュ)に残り続ける 対処法 このメッセージを解消するには、いったん、プロファイルをリセットする必要がありました。 ※既存プロファイル設定が消える場合があるので留意すること Step1 Windows Terminal を落とす Windows Terminal をいったんすべて落とす Step2 settings.json を消す エクスプローラーで settings.json のあるフォルダに移動しファイルを削除する %LOCALAPPDATA%\Packages\Micros

By Qualiteg プロダクト開発部