Node.jsのUUID生成を極める:crypto.randomUUID() vs 通常のUUID

Node.jsのUUID生成を極める:crypto.randomUUID() vs 通常のUUID
Photo by Towfiqu barbhuiya / Unsplash

こんにちは!

今回は、Webフロントで活躍するNode.jsでのUUID生成について、特にcrypto.randomUUID()と従来の方法の違いを解説します!

はじめに

UUIDは一意の識別子として広く使用されていますが、Node.jsには複数の生成方法があります。

crypto.randomUUID()の使用方法

import { randomUUID } from 'crypto';

const id = randomUUID();
console.log(id); // 例:'123e4567-e89b-12d3-a456-426614174000'

または、以下のように書いてもいいですね

import crypto from 'crypto';
const id= crypto.randomUUID();

主な特徴

  • 暗号学的に安全な乱数生成器を使用
  • 追加のパッケージインストールが不要
  • パフォーマンスが最適化済み
  • UUID v4形式を生成

従来のUUID生成方法

import { v4 as uuidv4 } from 'uuid';

const id = uuidv4();
console.log(id);

特徴

  • 複数のUUIDバージョンに対応
  • カスタマイズオプションが豊富
  • コミュニティでの実績が長い
  • NPMパッケージのインストールが必要

複数のUUIDバージョンを使用する場合

import { v1, v3, v4, v5 } from 'uuid';

const timeBasedId = v1();  // タイムベース
const nameBasedMD5Id = v3('hello', v3.DNS);  // 名前ベース(MD5)
const randomId = v4();  // ランダム
const nameBasedSHA1Id = v5('hello', v5.DNS);  // 名前ベース(SHA-1)

どちらを選ぶべき?

crypto.randomUUID()を選ぶケース

  • セキュリティが重要な場合
  • 依存関係を最小限に抑えたい場合
  • シンプルなUUID v4の生成で十分な場合

uuidパッケージを選ぶケース

  • 特定のUUIDバージョンが必要な場合
  • 生成プロセスをカスタマイズしたい場合
  • 下位バージョンのNode.jsとの互換性が必要な場合

まとめ

プロジェクトの要件に応じて、適切な方法を選択してください。特に理由がない場合は、組み込みのcrypto.randomUUID()を使用することをお勧めします。

Appendix:暗号学的に安全な乱数とは?

さて、暗号学的に安全な乱数生成器(Cryptographically Secure Random Number Generator: CSPRNG)とは何でしょうか?

「セキュリティ的に良い」だけでは、ちょっと物足りないかもしれませんのでこれについて、Appendixで具体的にみていきましょう。

基本的な特徴

暗号号学的に安全な乱数生成器とは、基本的には以下のような特徴があります

1.予測不可能性

  • 生成された乱数の次の値を予測することが実質的に不可能
  • これまでの出力からパターンを見つけることができない

2.均一な分布

  • すべての可能な値が同じ確率で出現
  • 偏りがない

一般的な乱数生成器との違い

例えば、JavaScriptのMath.random()との比較で見てみましょう:

// 一般的な乱数生成
const normal = Math.random();

// 暗号学的に安全な乱数生成
import { randomBytes } from 'crypto';
const secure = randomBytes(8).readBigUInt64BE() / BigInt(2 ** 64);

Math.random()の問題点

  • シード値から次の値が予測可能
  • 暗号用途には不適切
  • 擬似乱数生成アルゴリズムが比較的単純

crypto.randomUUID()の利点

  • OSの提供する暗号学的乱数源を使用(Linux の場合は /dev/urandom など)
  • 物理的なノイズソースを利用
  • 予測が極めて困難

実際のユースケース

暗号学的に安全な乱数が重要な場面:

  1. セキュリティトークンの生成
import { randomBytes } from 'crypto';
const secureToken = randomBytes(32).toString('hex');
  1. パスワードリセットトークン
import { randomUUID } from 'crypto';
const resetToken = randomUUID();
  1. 初期化ベクトル(IV)の生成
import { randomBytes } from 'crypto';
const iv = randomBytes(16); // AES-256用

実際の違いを視覚化

一般的な乱数生成器と暗号学的に安全な乱数生成器の違いを見てみましょう:

import { randomBytes } from 'crypto';

// 一般的な乱数列
const normalRandoms = Array.from(
  { length: 1000 }, 
  () => Math.random()
);

// 暗号学的に安全な乱数列
const secureRandoms = Array.from(
  { length: 1000 }, 
  () => randomBytes(8).readBigUInt64BE() / BigInt(2 ** 64)
);

一般的な乱数生成器は、短時間で大量の値を生成する必要がある場合に適していますが、予測可能性があるため、セキュリティが重要な用途には適していません。

一方、暗号学的に安全な乱数生成器は:

  • より多くのエントロピー(ランダム性)を持つ
  • 予測が実質的に不可能
  • 計算コストは高いが、セキュリティが保証される

これが、UUIDの生成においてcrypto.randomUUID()が推奨される理由です。特に認証トークンやセッションIDなど、セキュリティが重要な場面では、この予測不可能性が極めて重要になります。

Read more

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング
AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部