Qualiteg AIセキュリティチーム

Qualiteg AIセキュリティチーム
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

IT & AIテクノロジー

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

11月に入り、朝晩の冷え込みが本格的になってきましたね。オフィスでも暖房を入れ始めた方も多いのではないでしょうか。 温かいコーヒーを片手に、シリーズ第4回「プロキシサーバーと統合Windows認証」をお届けします。 さて、前回(第3回)は、クライアントPCやサーバーをドメインに参加させる際の「信頼関係」の確立について深掘りしました。コンピューターアカウントが120文字のパスワードで自動認証される仕組みを理解いただけたことで、今回のプロキシサーバーの話もスムーズに入っていけるはずです。 ChatGPTやClaudeへのアクセスを監視する中間プロキシを構築する際、最も重要なのが「確実なユーザー特定」です。せっかくHTTPS通信をインターセプトして入出力内容を記録できても、アクセス元が「tanaka_t」なのか「yamada_h」なのかが分からなければ、監査ログとしての価値は半減してしまいます。 今回は、プロキシサーバー自体をドメインメンバーとして動作させることで、Kerberosチケットの検証を可能にし、透過的なユーザー認証を実現する方法を詳しく解説します。Windows版Squid

By Qualiteg AIセキュリティチーム
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

IT & AIテクノロジー

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第3回 クライアントとサーバーのドメイン参加

こんにちは、今回はシリーズ第3回クライアントとサーバーのドメイン参加について解説いたします! はじめに こんにちは!シリーズ第3回「クライアントとサーバーのドメイン参加」へようこそ。 前回(第2回)では、Active Directoryドメイン環境の構築手順について、ドメインコントローラーのセットアップからDNS設定まで詳しく解説しました。ドメイン環境の「土台」が整ったところで、今回はいよいよ実際にコンピューターをドメインに参加させる手順に進みます。 「ドメインユーザーアカウントを作ったのに、なぜかログインできない」「新しいPCを追加したけど、ドメイン認証が使えない」といった経験はありませんか?実は、Active Directoryの世界では、ユーザーアカウントを作成しただけでは不十分で、そのユーザーが使用するコンピューター自体もドメインに「参加」させる必要があるのです。 本記事では、このドメイン参加について、単なる手順の説明にとどまらず、「なぜドメイン参加が必要なのか」「裏側で何が起きているのか」という本質的な仕組みまで、初心者の方にも分かりやすく解説していきます。Win

By Qualiteg AIセキュリティチーム, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

IT & AIテクノロジー

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg AIセキュリティチーム, Qualiteg コンサルティング
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

LLM セキュリティ

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg AIセキュリティチーム
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

IT & AIテクノロジー

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

LLM セキュリティ

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg AIセキュリティチーム
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

生成AI最前線

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
LLM時代の企業情報防衛:PIIセキュリティの新たな挑戦

LLM-Audit

LLM時代の企業情報防衛:PIIセキュリティの新たな挑戦

はじめに なぜ今、PIIセキュリティが重要なのか 私たちは大規模言語モデル(LLM)が業務の隅々まで浸透した時代を生きています。ChatGPT、Claude、Geminiなどの生成AIツールは、もはや実験的な技術ではなく、日常業務に欠かせないインフラとなりました。しかし、この便利さの裏側で、企業の個人識別情報(PII)は前例のない脅威にさらされています。 従来のセキュリティ対策では想定していなかった「AIへの情報漏洩」という新たなリスクが生まれ、企業は情報防衛戦略の根本的な見直しを迫られています。 PIIとは何か ~生成AI&LLM時代の再定義~ 従来のPII定義 個人識別情報(Personal Identifiable Information)は、単独または他の情報と組み合わせることで特定の個人を識別できる情報を指します。 たとえば、従来は以下のような情報が主な対象でした * 直接識別子:氏名、住所、電話番号、メールアドレス、マイナンバー * 間接識別子:生年月日、職業、勤務先、IPアドレス * 機密情報:医療記録、金融情報、生体認証データ LLM時

By Qualiteg AIセキュリティチーム
LLM-Audit ~LLMへの攻撃と防衛の最前線 ~

LLM セキュリティ

LLM-Audit ~LLMへの攻撃と防衛の最前線 ~

はじめに 人工知能技術の急速な進化により、大規模言語モデル(LLM)は多くの企業や組織にとって不可欠なツールとなっています。自然言語処理、コード生成、データ分析など、LLMの応用範囲は日々拡大し、ビジネスプロセスの効率化や創造的タスクの支援など、幅広い分野で革新をもたらしています。しかし、この革新的な技術の普及に伴い、新たなセキュリティリスクも浮上しており、企業はこれらのリスクに対する適切な対策を講じる必要に迫られています。 本記事では、当社が開発したLLMセキュリティソリューション「LLM-Audit」をご紹介します。LLM-Auditは、LLMの入力と出力を徹底的に監査し、セキュリティリスクを最小限に抑える包括的なセキュリティ&セーフティ実現ソリューションです。 従来のセキュリティ対策では対応が難しいLLM特有の脆弱性や、日本語環境特有の課題に対しても高度な保護を提供します。 動画 本記事の内容はこちらの動画でもご覧いただけます。 LLMセキュリティの重要性 LLMのセキュリティ管理が不十分な場合、企業は深刻な結果に直面する可能性があります。 最も懸

By Qualiteg プロダクト開発部, Qualiteg AIセキュリティチーム
【LLMセキュリティ】ハルシネーションの検出方法

LLM セキュリティ

【LLMセキュリティ】ハルシネーションの検出方法

こんにちは、Qualiteg研究部です。 本日は、RAGにおけるハルシネーション検出に関する、こちらの論文について解説をしつつ、ハルシネーション検出をおこなうLLMについて考察をしてみたいと思います。 "Lynx: An Open Source Hallucination Evaluation Model" https://arxiv.org/pdf/2407.08488 概要 LYNXという、RAG(Retrieval Augmented Generation) システムにおいて参照なしで高品質なハルシネーション検出が可能なオープンソースのLLMの構築方法、仕組みに関する論文です。 RAGシーンにおいて、LLMが生成する回答が、質問やコンテキストに対して「忠実」であるかどうかを判定することで、ハルシネーションを検出することができます。 研究の成果である、ハルシネーション判定のために llama3ファインチューニングがほどこされたモデルは 以下に公開されています。 https://huggingface.co/PatronusAI/Llama-3-Patronus-Lynx

By Qualiteg 研究部, Qualiteg AIセキュリティチーム