Qualiteg プロダクト開発部

Qualiteg プロダクト開発部
革新的なコード生成LLM "Codestral Mamba 7B" を試してみた

LLM

革新的なコード生成LLM "Codestral Mamba 7B" を試してみた

今日は、2024年7月16日にリリースされた新しいコード生成LLM、"mistralai/mamba-codestral-7B-v0.1"(通称:Codestral Mamba 7B)を試してみました。 このモデルは、新しいMambaアーキテクチャを採用しており、Apache2ライセンスで公開されています。 コード生成のSOTAモデルに迫る性能 Mamba アーキテクチャを採用した Codestral 7B ですが、Human Eval で 75% を達成しており、Transformerベースのコード生成 SOTA モデルと同等のパフォーマンスを実現しています。 さらに、シーケンス長に対しての処理劣化がないため、かなり期待のできるモデル&アーキテクチャといえますね。 動画にまとめています "mistralai/mamba-codestral-7B-v0.1" の試用レポートはこちらの動画にもまとめてありますので、よろしければ、こちらもご覧くださいませ Codestral Mamba 7Bの特徴 1. 無限の長さのシーケンスをモデル化する能力 2. 長いシー

By Qualiteg プロダクト開発部
FP8やFP4のネイティブサポートと vLLM をつかった "fp8" 量子化

FP8やFP4のネイティブサポートと vLLM をつかった "fp8" 量子化

こんにちは、(株)Qualiteg プロダクト開発部です 最新モデルがリリースされたとき、推論速度を速くするために、いろいろな手法で量子化したり、複数の推論エンジンを使い分けたりしながら、正解をさがしにいくことが多いのですが、今回はそんな中で以下のような事象が発生いたしました。 当社もありとあらゆるGPUを取り揃えているわけではないので、あー、そういうことかぁ、と思ったので、本ブログにいたしました。 発生したエラー vLLM 0.5.1 であるLLMをロードしようとしたときに発生したときに、以下のようなエラーが発生しました ValueError: The quantization method fp8 is not supported for the current GPU. Minimum capability: 89. Current capability: 86 原因は FP8 に対応していないGPU世代 GPUは NVIDIA RTX-A6000 で、以下のように OpenAI 互換サーバーで

By Qualiteg プロダクト開発部
CyberAgentLM3-22B-Chat(cyberagent/calm3-22b-chat) 徹底解説

ChatStream

CyberAgentLM3-22B-Chat(cyberagent/calm3-22b-chat) 徹底解説

こんにちは、(株)Qualiteg プロダクト開発部です。 本日は昨日プレスリリースされた サイバーエージェント社の最新LLM CyberAgentLM3-22B-Chat(cyberagent/calm3-22b-chat) について、ファーストルックレポートを行います。 デモ 実際に、以下サイトで calm3-22b-chat とチャットお試し可能です https://chatstream.net/?ws_name=chat_app&mult=0&ontp=1&isync=1&model_id=calm3_22b_chat オープン・フルスクラッチモデルでリーダーボード最高評価 本モデルは、このモデルは、既存モデルをベースに用いずスクラッチで開発を行なった225億パラメータのモデルで Nejumi LLM リーダーボード3の総合評価で 700億パラメータのMeta-Llama-3-70B-Instructと同等性能となっているようです。 継続事前学習ではなく、フルスクラッチの日本語LLMという点にも注目です。 以下は日本語LLMリーダーボード1

By Qualiteg プロダクト開発部
RuntimeError: implement_array_function method already has a docstring というエラーが発生したとき

日々の開発Tips

RuntimeError: implement_array_function method already has a docstring というエラーが発生したとき

以下のようなエラーが発生したとき、 RuntimeError: implement_array_function method already has a docstring このエラーメッセージは、numpyパッケージ内で発生している問題のようです。 特に、implement_array_functionメソッドに既にドキュメンテーションが存在しているというエラーで、これは通常、互換性のないバージョンのnumpyを使用している場合に発生するようです。 次の対策でエラーは発生しなくなりました pip install numpy==1.19.5

By Qualiteg プロダクト開発部
ChatStream🄬でLlama-3-Elyza-JP-8B を動かす

ChatStream

ChatStream🄬でLlama-3-Elyza-JP-8B を動かす

こんにちは、本日は Llama-3-Elyza-JP-8B を使ってみました。 昨日 2024年6月26日に発表(https://prtimes.jp/main/html/rd/p/000000046.000047565.html)された Llama-3-Elyza-JP-8B は 70B 版では「GPT-4」を上回る性能の日本語LLMといわれています。 今回、当社でも Playground 環境に Llama-3-Elyza-JP-8B を搭載して試してみましたのでご紹介します。 70B(700億パラメータ)版は GPT-4 を上回るとのことですので、8B(80億パラメータ)版はGPT-3.5 と比較してみることにいたしました。 (性能比較は https://note.com/elyza/n/n360b6084fdbd の記事に詳しく書いてあります。) AWQ量子化版を使用してみる 今回は、A4000

By Qualiteg プロダクト開発部
AttributeError: module 'torch._dynamo' has no attribute 'mark_static_address' が発生したときの対処法

日々の開発Tips

AttributeError: module 'torch._dynamo' has no attribute 'mark_static_address' が発生したときの対処法

以下のようなエラーが出た場合の対処法 File "/venv/Lib/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/venv/Lib/site-packages/transformers/generation/utils.py", line 1744, in generate model_kwargs["past_key_values"] = self._get_cache( ^^^^^^^^^^^^^^^^ File "/venv/Lib/site-packages/transformers/

By Qualiteg プロダクト開発部
NVIDIA GPU と Capability Level

日々の開発Tips

NVIDIA GPU と Capability Level

NVIDIA GPU の Capability Level の一覧です。 推論エンジンがサポートする各種アクセラレーション機能は Capability Level により搭載されるハードウェアアクセラレータや専用機能が異なります。 データセンター/プロ向けGPU GeForce GPU Capability Level 世代名 NVIDIA B200 - 100 Blackwell NVIDIA B100 - 100 Blackwell NVIDIA H200 - 90 Hopper NVIDIA H100 - 90 Hopper NVIDIA L4 - 89 Ada Lovelace NVIDIA L40 - 89 Ada Lovelace RTX

By Qualiteg プロダクト開発部
【GPT4o対応】OpenAI API のPythonサンプルコードと出力例

日々の開発Tips

【GPT4o対応】OpenAI API のPythonサンプルコードと出力例

今回は、OpenAI の API 利用サンプルコードをご紹介します。 OpenAI API は OpenAI純正のAPI のみならず、vLLMなど他の推論エンジンでも OpenAI 準拠のAPIサーバーが公開されており、LLMサービングAPIのデファクトとなりつつありますので、コーディングのお作法をおさえておきましょう。 OpenAI の GPT シリーズのAPIにアクセスするための、シンプルなサンプルコードは以下のようになります。生成結果をストリーミングで逐次受信してみましょう。 サンプルコード:クイックスタート import asyncio import os import traceback from openai import AsyncOpenAI async def main() -> None: try: # モデル名を指定 # model="gpt-4-turbo" # $10.00/MTok for input

By Qualiteg プロダクト開発部
推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう

NumPy/PyTorch

推論時torch.tensor(sourceTensor)ではなくて、sourceTensor.clone().detach()を使おう

PyTorchのテンソル操作最適化: 警告メッセージの理解と解決 こんにちは! Qualiteg プロダクト開発部です。 PyTorch 1.13にて、次のような警告メッセージに遭遇しました UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). この記事では、この警告の意味を解説し、修正方針についてかきたいとおもいます。 torch.tensor() よりも .clone().detach() のほうがおすすめなのか それは、PyTorchがテンソルと自動微分(オートグラッド)をどのように扱うかに関係があります。 torch.

By Qualiteg プロダクト開発部
[ChatStream] 同時リクエスト時の推論速度を手軽に計測する

[ChatStream] 同時リクエスト時の推論速度を手軽に計測する

こんにちは、Qualitegプロダクト開発部です。 今回は RakutenAI-7B-Chat に5人同時リクエストしたときのパフォーマンスをお手軽に計測してみました。 実験環境 * GPU: A5000 * LLM: RakutenAI-7B-Chat AWQ-8 * 推論環境: ChatStream v0.7.2 * 同時リクエスト数: 5 動画のほうがわかりやすいとおもいますので、実際の実験の様子はこちらの動画をつくりました。ご覧くださいませ 動画にもありますように、ChatStreamUIのマルチタスク機能を有効にすると、同一画面内に複数のチャットウィンドウを開くことができます。 マルチタスク機能は、複数のLLMを連携させて業務をすすめていく為の機能ですが、今回は、この特長を利用して、同じモデルに対して同時に生成リクエストを投げる用途で使ってみました。以前も、この機能をつかった簡易計測をご紹介したのですが、今回は、入力プロンプトの同期機能を使用したので、より簡単に実施できました。 (1つのテキストボックスに入力プロンプトを入力すると、他のテキストボック

By Qualiteg プロダクト開発部
LLMサンプリングにおける3つのペナルティ

ChatStream Guide

LLMサンプリングにおける3つのペナルティ

[付録]ペナルティの比較 ペナルティタイプ 目的 適用方法 ペナルティの例 Repetition Penalty 特定のトークンやフレーズが繰り返されるのを防ぐ。 過去に生成されたすべてのトークンのログ確率(logits)に対してペナルティを適用する。 例えば、あるトークンがすでに生成された場合、そのトークンのログ確率をペナルティ値で割る(乗算)か、ペナルティ値を引く(減算)。 Frequency Penalty 生成されたトークンの出現頻度に基づいてペナルティを適用し、頻繁に出現するトークンを抑制する。 各トークンが生成された回数に基づいてペナルティを適用する。トークンが出現するたびに、そのトークンの出現確率を低減させる。 トークンが出現するたびに、そのトークンのログ確率をペナルティ値で累積的に割る(乗算)か、ペナルティ値を累積的に引く(減算)。 Presence Penalty すでに生成されたトークンが再度出現するのを防ぐ。 トークンが一度でも生成されたかどうかに基づいてペナルティを適用する。一度生成されたトークンには再出現の際にペナルティが適用さ

By Qualiteg プロダクト開発部
TensorRT-LLM v 0.11.0.dev2024051400 の動作確認

日々の開発Tips

TensorRT-LLM v 0.11.0.dev2024051400 の動作確認

こんにちは、株式会社 Qualiteg プロダクト開発部です! TensorRT-LLM は FasterTransformerの後継ともいえるNVIDIA製 推論エンジンで、当社ChatStreamの推論エンジンとしても選択可能です。 vLLMと同じく新しいモデル対応が早く、既存モデルも豊富にサポートされています。 昨日 大型コミットが入りましたので動作確認をしました。(マルチモーダルモデルNeva,Kosmos2に対応など。) TensorRT-LLM のサポートしている、モデルアーキテクチャは以下のとおりです。 LLM Baichuan, BART, BERT, Blip2, BLOOM, ChatGLM, DBRX, FairSeq NMT, Falcon, Flan-T5, Gemma, GPT, GPT-J, GPT-Nemo, GPT-NeoX, InternLM, LLaMA, LLaMA-v2, Mamba, mBART, Mistral, MPT, mT5, OPT, Phi-1.5/Phi-2, Qwen, Qwen-VL, Replit

By Qualiteg プロダクト開発部
【2024/5/14更新】LLM 推論 API 料金と推論速度

IT & AIテクノロジー

【2024/5/14更新】LLM 推論 API 料金と推論速度

LLM を API から利用するときに従量課金される料金と生成速度一覧まとめました。順次更新予定です。 【API 料金】 は 100万トークンあたりのアウトプット側 利用料を表示しています。 【生成速度】 は1秒間に何トークン生成できるかを示す " tokens/s"( tokens per second )で表示します。 (生成速度は入出力プロンプトの量・内容によって変動しますので、あくまで参考情報として表示しています) OpenAI GPT シリーズ * OpenAI GPTシリーズ * gpt-4o、100万トークンあたり $15.00 (約2250円)、 70 tokens/s * gpt-4-turbo-2024-04-09: 100万トークンあたり $30.00 (約4500円)、 45 tokens/s * gpt-3.5-turbo-0125: 100万トークンあたり $1.5

By Qualiteg プロダクト開発部, Qualiteg ビジネス開発本部 | マーケティング部
[ChatStream] 入出力プロンプトの予期せぬ変更に備え revision は固定する

日々の開発Tips

[ChatStream] 入出力プロンプトの予期せぬ変更に備え revision は固定する

こんにちは。(株) Qualiteg プロダクト開発部です。 GW中に、microsoft/Phi-3-mini-128k-instruct の tokenizer.json が変更になり、プロンプトのパースに失敗し、チャットのストリーミングができなくなる問題が発生しました。 実際には以下の変更がありました https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/commit/8a362e755d2faf8cec2bf98850ce2216023d178a もともと、Miscrosoft さんが書いていた記事にあるプロンプトフォーマットと実際のモデルのプロンプトフォーマットが異なっていたため、当社では、実際のモデルにあわせるヒューリスティックな対応をしておりましたが、モデル(\w tokenizer) 側がもとの仕様に近い形に修正してきた模様です。 これによって、当初動作していたプロンプト変換器が動作しなくなるという現象が発生しました。 LLM は「スピードが命!」なので、トークナイザー含め完全にテストされた状態

By Qualiteg プロダクト開発部
WSL-Ubuntu で bitsandbytes のインストールに失敗するとき

日々の開発Tips

WSL-Ubuntu で bitsandbytes のインストールに失敗するとき

bitsandbytes を pip install しようとしたときに、以下のようなエラーがでたときの対処方法です Could not load bitsandbytes native library: libcusparse.so.11: cannot open shared object file: No such file or directory Traceback (most recent call last): File "/home/mlu/.virtualenvs/ChatStream/lib/python3.10/site-packages/bitsandbytes/cextension.py", line 109, in <module>

By Qualiteg プロダクト開発部
LLM サービング効率化の為のPagedAttention

ChatStream Guide

LLM サービング効率化の為のPagedAttention

こんにちは、株式会社Qualitegプロダクト開発部です。 今日は 商用LLM サービングに欠かせない PagedAttention 技術をご紹介します はじめに PagedAttention は当社にとって非常に重要な技術です PagedAttentionを活用するとLLMでの文章生成において GPUメモリの利用効率をあげ 、そのぶん単位GPUあたりの同時に捌けるリクエストを増やすことができます。 当社は「ChatStream」という商用のLLMサービングプラットフォームを開発・提供しているため、多ユーザーからの同時リクエストによる高負荷環境でのLLMサービング(文章生成の提供)は、ドドド真ん中の課題ということになります。 PagedAttention登場以前の従来の並列生成はKVキャッシュとよばれる”リクエストごとに発生する大きなGPUメモリ消費”との戦いでした。 (KVキャッシュは transfomerのmodelを生で叩くときに past_key_values として登場します) つまりモデルのパラメータとは別に発生する推論時のメモリ消費です。 これが同時に

By Qualiteg プロダクト開発部