[AI新規事業創出]Qualitegが考える、ビジネスモデル設計でやるべきこと、やってはいけないこと

[AI新規事業創出]Qualitegが考える、ビジネスモデル設計でやるべきこと、やってはいけないこと

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


ビジネスモデル設計は、起業家や経営者にとって最も重要な戦略的意思決定の一つです。成功する企業と失敗する企業を分けるのは、このビジネスモデルの巧拙にほかなりません。

本日は、ビジネスモデル設計における重要なポイントと、避けるべき落とし穴について詳しく解説します。

やるべきこと

1. 顧客価値の徹底的な理解

最も重要なのは、顧客の真のニーズを深く理解することです。単なる表面的な市場調査ではなく、顧客の潜在的な課題、悩み、願望を徹底的に分析する必要があります。以下のアプローチが効果的です。

  • ペルソナ分析の実施(どのターゲットセグメントの誰を狙うのか)
  • 顧客へのインタビューと深い対話(できれば1on1で90分)
  • 顧客の行動観察や課題解決のためのエスノグラフィック調査(ユーザーの自宅訪問などですとよりリラックスして対応してくださるのでお勧めです)

2. 独自の価値提案の開発

競合他社と差別化できる唯一無二の価値提案を作ることが重要です。これは単なる製品や機能の違いではなく、顧客に対して提供できる本質的な価値です。

  • 競合分析を徹底的に行う(単なるスペック比較の○×表にならないように、、)
  • 自社の独自の強みを明確にする
  • 市場で真に必要とされるユニークな解決策を考案する(解決策が特段ユニークでなくてもUIUXが良いと愛されるサービスになります。)

3. 柔軟なビジネスモデル設計

市場の変化に対応できる柔軟性を持つことが重要です。以下の要素を考慮しましょう。

  • 複数のシナリオを想定した戦略立案(収入源は一方通行ではなく複数にまたがるのが吉)
  • 迅速な pivot(方向転換)の可能性を残す
  • 継続的な市場調査と仮説検証(自社のValue Proposisionと他社の価格の比較などは常に行いましょう。)

4. 収益モデルの明確化

どのように収益を生み出すかを明確に設計することが重要です。以下の観点から検討しましょう。

  • 多様な収益ストリームの検討
  • スケーラビリティを考慮した収益モデル
  • 長期的な収益性の確保(安定性が安心を生みます)

5. テクノロジーと innovation の活用

最新のテクノロジーとイノベーションを積極的に取り入れることで、競争優位性を確保できます。

  • 最新テクノロジーのトレンド調査
  • デジタルトランスフォーメーションの検討
  • イノベーション創出のための環境づくり

株式会社Qualitegの Innovation-Crossは、イノベーション共創の専門家集団による包括的支援プログラムです。企業の現状分析に基づく精緻な戦略策定から、オープンイノベーションの実行支援まで、革新創出の全プロセスをプロフェッショナルの視点でサポート。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多様な専門領域をカバーする実践的アプローチで、社内外のリソースを最適に組み合わせた価値創造を実現します。「自社内だけでは革新が難しい」という課題に、経験豊富な専門コンサルタントが明確な解決策を提示し、イノベーション創出を確実な成功へと導きます。

やってはいけないこと

1. トレンドや他社の単純な模倣

他社の成功モデルをそのまま真似することは危険です。市場環境、自社の強み、顧客ニーズや自社のアセットは常に異なるためです。

2. 顧客視点の欠如

顧客の本当のニーズを無視して、自社の都合だけで設計することは致命的な誤りです。常に顧客価値を中心に考えることが重要です。

また、ここでお話しする顧客価値とは、「お客がお金を払ってまで欲しいと思えるソリューション」であり、単なるお世辞の「いいね」とは異なりますので気を付けてくださいね。

3. 過度に複雑なビジネスモデル

複雑すぎるモデルは実行が困難で、リソースを浪費します。シンプルで明確なモデルを目指しましょう。

4. 短期的思考

目先の利益のみを追求し、長期的な成長戦略を無視することは避けるべきです。持続可能な成長を常に意識しましょう。

5. データに基づかない意思決定

直感や経験則のみに頼る意思決定は危険です。データ駆動型のアプローチを心がけましょう。

最後に

ビジネスモデル設計は、一度作れば終わりというものではありません。常に市場環境を注視し、柔軟に修正と改善を続けることが成功への鍵となります。顧客価値を中心に、独自の強みを活かしたモデルを追求していきましょう!

成功するビジネスモデルは、顧客の課題を深く理解し、独自の解決策を提供できる企業にのみ開かれています。

常に学び、挑戦し続ける姿勢こそが、優れたビジネスモデル設計につながるのです。ぜひあきらめずに何度もUpdateをしてみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部