[AI新規事業創出]Qualitegが考える、ビジネスモデル設計でやるべきこと、やってはいけないこと

[AI新規事業創出]Qualitegが考える、ビジネスモデル設計でやるべきこと、やってはいけないこと

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


ビジネスモデル設計は、起業家や経営者にとって最も重要な戦略的意思決定の一つです。成功する企業と失敗する企業を分けるのは、このビジネスモデルの巧拙にほかなりません。

本日は、ビジネスモデル設計における重要なポイントと、避けるべき落とし穴について詳しく解説します。

やるべきこと

1. 顧客価値の徹底的な理解

最も重要なのは、顧客の真のニーズを深く理解することです。単なる表面的な市場調査ではなく、顧客の潜在的な課題、悩み、願望を徹底的に分析する必要があります。以下のアプローチが効果的です。

  • ペルソナ分析の実施(どのターゲットセグメントの誰を狙うのか)
  • 顧客へのインタビューと深い対話(できれば1on1で90分)
  • 顧客の行動観察や課題解決のためのエスノグラフィック調査(ユーザーの自宅訪問などですとよりリラックスして対応してくださるのでお勧めです)

2. 独自の価値提案の開発

競合他社と差別化できる唯一無二の価値提案を作ることが重要です。これは単なる製品や機能の違いではなく、顧客に対して提供できる本質的な価値です。

  • 競合分析を徹底的に行う(単なるスペック比較の○×表にならないように、、)
  • 自社の独自の強みを明確にする
  • 市場で真に必要とされるユニークな解決策を考案する(解決策が特段ユニークでなくてもUIUXが良いと愛されるサービスになります。)

3. 柔軟なビジネスモデル設計

市場の変化に対応できる柔軟性を持つことが重要です。以下の要素を考慮しましょう。

  • 複数のシナリオを想定した戦略立案(収入源は一方通行ではなく複数にまたがるのが吉)
  • 迅速な pivot(方向転換)の可能性を残す
  • 継続的な市場調査と仮説検証(自社のValue Proposisionと他社の価格の比較などは常に行いましょう。)

4. 収益モデルの明確化

どのように収益を生み出すかを明確に設計することが重要です。以下の観点から検討しましょう。

  • 多様な収益ストリームの検討
  • スケーラビリティを考慮した収益モデル
  • 長期的な収益性の確保(安定性が安心を生みます)

5. テクノロジーと innovation の活用

最新のテクノロジーとイノベーションを積極的に取り入れることで、競争優位性を確保できます。

  • 最新テクノロジーのトレンド調査
  • デジタルトランスフォーメーションの検討
  • イノベーション創出のための環境づくり

株式会社Qualitegの Innovation-Crossは、イノベーション共創の専門家集団による包括的支援プログラムです。企業の現状分析に基づく精緻な戦略策定から、オープンイノベーションの実行支援まで、革新創出の全プロセスをプロフェッショナルの視点でサポート。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多様な専門領域をカバーする実践的アプローチで、社内外のリソースを最適に組み合わせた価値創造を実現します。「自社内だけでは革新が難しい」という課題に、経験豊富な専門コンサルタントが明確な解決策を提示し、イノベーション創出を確実な成功へと導きます。

やってはいけないこと

1. トレンドや他社の単純な模倣

他社の成功モデルをそのまま真似することは危険です。市場環境、自社の強み、顧客ニーズや自社のアセットは常に異なるためです。

2. 顧客視点の欠如

顧客の本当のニーズを無視して、自社の都合だけで設計することは致命的な誤りです。常に顧客価値を中心に考えることが重要です。

また、ここでお話しする顧客価値とは、「お客がお金を払ってまで欲しいと思えるソリューション」であり、単なるお世辞の「いいね」とは異なりますので気を付けてくださいね。

3. 過度に複雑なビジネスモデル

複雑すぎるモデルは実行が困難で、リソースを浪費します。シンプルで明確なモデルを目指しましょう。

4. 短期的思考

目先の利益のみを追求し、長期的な成長戦略を無視することは避けるべきです。持続可能な成長を常に意識しましょう。

5. データに基づかない意思決定

直感や経験則のみに頼る意思決定は危険です。データ駆動型のアプローチを心がけましょう。

最後に

ビジネスモデル設計は、一度作れば終わりというものではありません。常に市場環境を注視し、柔軟に修正と改善を続けることが成功への鍵となります。顧客価値を中心に、独自の強みを活かしたモデルを追求していきましょう!

成功するビジネスモデルは、顧客の課題を深く理解し、独自の解決策を提供できる企業にのみ開かれています。

常に学び、挑戦し続ける姿勢こそが、優れたビジネスモデル設計につながるのです。ぜひあきらめずに何度もUpdateをしてみてください。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング