chatstream.net のクエリパラメータ仕様

chatstream.net のクエリパラメータ仕様

chatstream.net は(株)Qualiteg が運用するサービスで、世界中で公開されている最新のLLMをいちはやく体験することができます。

特定の LLM を開いてじっくりチャットをしたり、複数のLLM を開いて協調的につかってみたり、LLM同士で出力を比較させたり、LLMのもつポテンシャルを感じていただけるようになっています。

たとえば、PCブラウザでURLを開くと、4つのLLMを同時に開いて、同時にチャットを行うことができます。このようにお好みに応じてチャットを制御することができるのがURLパラメータです。

https://chatstream.net/?ws_name=chat_app&mult=1&ontp=1&isync=1&model_id=llama_3_elyza_jp_8b&model_id=openai_gpt_3_5_175b&model_id=anthropic_claude3_0_haiku&model_id=google_gemini1_5_flash

URLパラメータ

chatstream.net の動作はURLパラメータである程度制御することが可能です。

URLパラメータとは https://chatstream.net の後に ? を付与して例えば https://chatstream.net?model_id=openai_gpt_4o_mini のように ? につづいて キー=値 のようなクエリ文字列を指定することで chatstream.net のお好みに応じて制御することができます。

パラメータ一覧

【ws_name】
自動で選択状態にしたいワーキングセット名を指定します。

ws_name="chat_app"

ワーキングセットは、PC画面では左端(スマホでは下端)に表示されるボタンで切り替えることのできる作業単位です。現在は "chat_app","chat_app_en" を指定することができます。

【mult】
multi_topic_mode をあらわすクエリパラメータです。

mult=1

mult=1 を指定すると、マルチトピックモードとなり、PCで使用するときに、複数のLLMチャットを同時に開くことのできるモードになります。

(例)
mult=1 マルチトピックモード
mult=0 シングルトピックモード
mult無指定 デフォルト設定またはユーザーの記録

【ontp】
open_new_topic をあらわすクエリパラメータです。

新規トピックとして開きます。

ontp=1

(例)
ontp=1 自動的に新しいトピックを開く
ontp=0 (デフォルトに従う)
ontp無指定(デフォルト動作に従う)

【model_id】
自動的に開きたいmodel_idを指定します。
複数指定すると複数開くことができます

model_id=openai_gpt_4o_mini&model_id=rakuten__rakuten_ai_7b_chat

model_id 一覧(※一部モデルは法人版のみで有効)

モデル名 モデル表示名 model_id
llama3.1 Meta-Llama-3.1-8B meta_llama_3_1_8b_instruct
node(chatstream.net用mistral_nemo) Mistral-Nemo-Instruct-2407 mistral_nemo_instruct_2407
node:0(default) calm3-22b-chat calm3_22b_chat
node(chatstream.net用elyza8B) Llama-3-ELYZA-JP-8B llama_3_elyza_jp_8b
node:0(default) RakutenAI-7B-chat rakuten__rakuten_ai_7b_chat
node(chatstream.net用GPT4o_mini) OpenAI GPT-4o mini openai_gpt_4o_mini
node(chatstream.net用GPT3.5_newtech) OpenAI GPT-3.5 openai_gpt_3_5_175b
node(chatstream.net用Claude3Haiku) Anthropic Claude3-Haiku anthropic_claude3_0_haiku
node(chatstream.net用Gemini1.5Flash) Google Gemini1.5 Flash google_gemini1_5_flash
Anthropic Claude 3.5 Sonnet Anthropic Claude 3.5 Sonnet anthropic_claude_3_5_sonnet
Google Gemini1.5 Pro Google Gemini1.5 Pro google_gemini1_5_pro
OpenAI gpt-4o OpenAI GPT4o openai_gpt4o

・確実に複数 開きたいときは、 mult=1 を明示的に指定してください。
・確実に自動的に開きたいときは ontp=1 を明示的に指定してください。


【isync】
input_sync をあらわすクエリパラメータです。

複数のLLMへの入力を同期させることができます

isync=1


isync=1 入力同期が有効
isync=0 入力同期はしない
isync無指定 デフォルトの設定に従う

【noip】
noip は no_iphone をあらわすクエリーです。

iPhone専用の描画モードを無効にします

Read more

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部
企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

こんにちは! ChatGPTやClaudeといった生成AIサービスが業務に浸透し始めた今、 「AIに機密情報を送ってしまうリスク」 が新たなセキュリティ課題として浮上しています。 この課題に向き合う中で、私たちは改めて「企業のセキュリティアーキテクチャはどう変遷してきたのか」を振り返る機会がありました。 すると、ある疑問が浮かんできます。 「なんでこんなに複雑になってるんだっけ?」 企業のセキュリティ担当者なら、一度は思ったことがあるのではないでしょうか。 アルファベット3〜4文字の製品が乱立し、それぞれが微妙に重複した機能を持ち、設定は複雑化し、コストは膨らみ続けています。 当社ではAIセキュリティ関連プロダクトをご提供しておりますが、AI時代のセキュリティを考える上でも、この歴史を理解することは重要ではないかと考えました。 本記事では、企業ネットワークセキュリティの変遷を振り返りながら、「なぜこうなったのか」を整理してみたいと思います。 第1章:観測点を集約できた時代 ― オンプレAD + Proxy(〜2010年代前半) 統制しやすかったモデル かつ

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

こんにちは。 —— 2003年のSOAから、2026年のAIへ —— この記事は、過去の技術動向を振り返り、そこから学べる教訓について考察してみたものです。 歴史は常に、後から見れば明らかなことが、当時は見えなかったという教訓を与えてくれます。 そして、今私たちが「正しい」と信じていることもまた、20年後には違う評価を受けているかもしれません。 だからこそ、振り返ることには意味があるとおもいます。同じ轍を踏まないために。 はじめに:20年前の熱狂を覚えていますか 2000年代初頭。 私はSOA(サービス指向アーキテクチャ)に本気で取り組んでいました。 当時、SOAは「次世代のエンタープライズアーキテクチャ」として、業界全体が熱狂していました。 カンファレンスに行けば満員御礼、ベンダーのブースには人だかり、書店にも関連の書籍がちらほらと。 SOAP、SOAP with attachments、JAX-RPC、WS-Security、WS-ReliableMessaging、WS-AtomicTransaction... 仕様書の山と格闘する日々でした。 あれから

By Qualiteg コンサルティング
DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部