chatstream.net のクエリパラメータ仕様

chatstream.net のクエリパラメータ仕様

chatstream.net は(株)Qualiteg が運用するサービスで、世界中で公開されている最新のLLMをいちはやく体験することができます。

特定の LLM を開いてじっくりチャットをしたり、複数のLLM を開いて協調的につかってみたり、LLM同士で出力を比較させたり、LLMのもつポテンシャルを感じていただけるようになっています。

たとえば、PCブラウザでURLを開くと、4つのLLMを同時に開いて、同時にチャットを行うことができます。このようにお好みに応じてチャットを制御することができるのがURLパラメータです。

https://chatstream.net/?ws_name=chat_app&mult=1&ontp=1&isync=1&model_id=llama_3_elyza_jp_8b&model_id=openai_gpt_3_5_175b&model_id=anthropic_claude3_0_haiku&model_id=google_gemini1_5_flash

URLパラメータ

chatstream.net の動作はURLパラメータである程度制御することが可能です。

URLパラメータとは https://chatstream.net の後に ? を付与して例えば https://chatstream.net?model_id=openai_gpt_4o_mini のように ? につづいて キー=値 のようなクエリ文字列を指定することで chatstream.net のお好みに応じて制御することができます。

パラメータ一覧

【ws_name】
自動で選択状態にしたいワーキングセット名を指定します。

ws_name="chat_app"

ワーキングセットは、PC画面では左端(スマホでは下端)に表示されるボタンで切り替えることのできる作業単位です。現在は "chat_app","chat_app_en" を指定することができます。

【mult】
multi_topic_mode をあらわすクエリパラメータです。

mult=1

mult=1 を指定すると、マルチトピックモードとなり、PCで使用するときに、複数のLLMチャットを同時に開くことのできるモードになります。

(例)
mult=1 マルチトピックモード
mult=0 シングルトピックモード
mult無指定 デフォルト設定またはユーザーの記録

【ontp】
open_new_topic をあらわすクエリパラメータです。

新規トピックとして開きます。

ontp=1

(例)
ontp=1 自動的に新しいトピックを開く
ontp=0 (デフォルトに従う)
ontp無指定(デフォルト動作に従う)

【model_id】
自動的に開きたいmodel_idを指定します。
複数指定すると複数開くことができます

model_id=openai_gpt_4o_mini&model_id=rakuten__rakuten_ai_7b_chat

model_id 一覧(※一部モデルは法人版のみで有効)

モデル名 モデル表示名 model_id
llama3.1 Meta-Llama-3.1-8B meta_llama_3_1_8b_instruct
node(chatstream.net用mistral_nemo) Mistral-Nemo-Instruct-2407 mistral_nemo_instruct_2407
node:0(default) calm3-22b-chat calm3_22b_chat
node(chatstream.net用elyza8B) Llama-3-ELYZA-JP-8B llama_3_elyza_jp_8b
node:0(default) RakutenAI-7B-chat rakuten__rakuten_ai_7b_chat
node(chatstream.net用GPT4o_mini) OpenAI GPT-4o mini openai_gpt_4o_mini
node(chatstream.net用GPT3.5_newtech) OpenAI GPT-3.5 openai_gpt_3_5_175b
node(chatstream.net用Claude3Haiku) Anthropic Claude3-Haiku anthropic_claude3_0_haiku
node(chatstream.net用Gemini1.5Flash) Google Gemini1.5 Flash google_gemini1_5_flash
Anthropic Claude 3.5 Sonnet Anthropic Claude 3.5 Sonnet anthropic_claude_3_5_sonnet
Google Gemini1.5 Pro Google Gemini1.5 Pro google_gemini1_5_pro
OpenAI gpt-4o OpenAI GPT4o openai_gpt4o

・確実に複数 開きたいときは、 mult=1 を明示的に指定してください。
・確実に自動的に開きたいときは ontp=1 を明示的に指定してください。


【isync】
input_sync をあらわすクエリパラメータです。

複数のLLMへの入力を同期させることができます

isync=1


isync=1 入力同期が有効
isync=0 入力同期はしない
isync無指定 デフォルトの設定に従う

【noip】
noip は no_iphone をあらわすクエリーです。

iPhone専用の描画モードを無効にします

Read more

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部
Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

Model Context Protocol完全実装ガイド 2025- 仕様変遷から最新Streamable HTTPまでの全て

こんにちは! 現在、LLM業界で破竹の勢いでひろまっているMCPについて、本日はとくに実装面について解説していきたいとおもいます。 MCP、MCPとひとくちにいっていますが、実は短期間でけっこう「標準」とよばれる仕様が変化しておりますので、仕様のバリエーションを順を追って解説しつつ、実際に実装をしていきたいとおもいます。 さて、MCPですが、2024年後半、Anthropicが発表したModel Context Protocol(MCP)は、AI分野における重要な転換点となりました。 従来、各AIベンダーが独自に実装していたツール呼び出し機能(tool useと呼びます)を標準化し、AIモデルと外部システムの連携を統一的に扱える仕組みを提供しました 本記事で、MCPの誕生から現在に至るまでの技術的変遷を詳細に追いながら、2025年時点での最適な実装方法を完全なソースコードと共に解説します。特に、仕様の変化に振り回されがちな実装者の視点から、なぜ現在の形に収束したのか、そして今後どのような実装アプローチを取るべきかを明確にしていきます。 第1章 MCPが解決しようとした問題

By Qualiteg プロダクト開発部
【出展報告】ASCII STARTUP TechDay 2025

【出展報告】ASCII STARTUP TechDay 2025

こんにちは! 本日、「ASCII STARTUP TechDay 2025」に出展してまいりましたのでレポートさせていただきます! ASCII STARTUP TechDay 2025 ASCII STARTUP TechDay 2025は、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催された、ディープテック・スタートアップのエコシステム構築をテーマにした展示交流・カンファレンスイベントです。 秋の展示会は本当にいいですね 本日はとてもよいお天気で、涼しくて、展示会にはピッタリの気候で朝からルンルンでした。しかも午後からの展示会ということで、気持ちに余裕をもって朝の業務をこなしていたところ、けっこうすぐに昼前になり、あわてて現場へ。 浅草橋は当社からもわりと近いという立地の良さを甘く見ておりましたが💦、なんとか予定時刻前に到着しました。やっぱり、都心開催は本当にありがたいですね。 会場へ急いでいると、おなかが「ぐ~」と鳴り 「そういえば、朝食まだだったわ」 とおもったところに、なんと私の大好きなエッセンさん🍞のトラックがあるで

By Qualiteg ビジネス開発本部 | マーケティング部