chatstream.net のクエリパラメータ仕様

chatstream.net のクエリパラメータ仕様

chatstream.net は(株)Qualiteg が運用するサービスで、世界中で公開されている最新のLLMをいちはやく体験することができます。

特定の LLM を開いてじっくりチャットをしたり、複数のLLM を開いて協調的につかってみたり、LLM同士で出力を比較させたり、LLMのもつポテンシャルを感じていただけるようになっています。

たとえば、PCブラウザでURLを開くと、4つのLLMを同時に開いて、同時にチャットを行うことができます。このようにお好みに応じてチャットを制御することができるのがURLパラメータです。

https://chatstream.net/?ws_name=chat_app&mult=1&ontp=1&isync=1&model_id=llama_3_elyza_jp_8b&model_id=openai_gpt_3_5_175b&model_id=anthropic_claude3_0_haiku&model_id=google_gemini1_5_flash

URLパラメータ

chatstream.net の動作はURLパラメータである程度制御することが可能です。

URLパラメータとは https://chatstream.net の後に ? を付与して例えば https://chatstream.net?model_id=openai_gpt_4o_mini のように ? につづいて キー=値 のようなクエリ文字列を指定することで chatstream.net のお好みに応じて制御することができます。

パラメータ一覧

【ws_name】
自動で選択状態にしたいワーキングセット名を指定します。

ws_name="chat_app"

ワーキングセットは、PC画面では左端(スマホでは下端)に表示されるボタンで切り替えることのできる作業単位です。現在は "chat_app","chat_app_en" を指定することができます。

【mult】
multi_topic_mode をあらわすクエリパラメータです。

mult=1

mult=1 を指定すると、マルチトピックモードとなり、PCで使用するときに、複数のLLMチャットを同時に開くことのできるモードになります。

(例)
mult=1 マルチトピックモード
mult=0 シングルトピックモード
mult無指定 デフォルト設定またはユーザーの記録

【ontp】
open_new_topic をあらわすクエリパラメータです。

新規トピックとして開きます。

ontp=1

(例)
ontp=1 自動的に新しいトピックを開く
ontp=0 (デフォルトに従う)
ontp無指定(デフォルト動作に従う)

【model_id】
自動的に開きたいmodel_idを指定します。
複数指定すると複数開くことができます

model_id=openai_gpt_4o_mini&model_id=rakuten__rakuten_ai_7b_chat

model_id 一覧(※一部モデルは法人版のみで有効)

モデル名 モデル表示名 model_id
llama3.1 Meta-Llama-3.1-8B meta_llama_3_1_8b_instruct
node(chatstream.net用mistral_nemo) Mistral-Nemo-Instruct-2407 mistral_nemo_instruct_2407
node:0(default) calm3-22b-chat calm3_22b_chat
node(chatstream.net用elyza8B) Llama-3-ELYZA-JP-8B llama_3_elyza_jp_8b
node:0(default) RakutenAI-7B-chat rakuten__rakuten_ai_7b_chat
node(chatstream.net用GPT4o_mini) OpenAI GPT-4o mini openai_gpt_4o_mini
node(chatstream.net用GPT3.5_newtech) OpenAI GPT-3.5 openai_gpt_3_5_175b
node(chatstream.net用Claude3Haiku) Anthropic Claude3-Haiku anthropic_claude3_0_haiku
node(chatstream.net用Gemini1.5Flash) Google Gemini1.5 Flash google_gemini1_5_flash
Anthropic Claude 3.5 Sonnet Anthropic Claude 3.5 Sonnet anthropic_claude_3_5_sonnet
Google Gemini1.5 Pro Google Gemini1.5 Pro google_gemini1_5_pro
OpenAI gpt-4o OpenAI GPT4o openai_gpt4o

・確実に複数 開きたいときは、 mult=1 を明示的に指定してください。
・確実に自動的に開きたいときは ontp=1 を明示的に指定してください。


【isync】
input_sync をあらわすクエリパラメータです。

複数のLLMへの入力を同期させることができます

isync=1


isync=1 入力同期が有効
isync=0 入力同期はしない
isync無指定 デフォルトの設定に従う

【noip】
noip は no_iphone をあらわすクエリーです。

iPhone専用の描画モードを無効にします

Read more

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

Google GenAI SDK のストリーミングでマルチターン画像編集🍌が不安定になる問題と対処法

こんにちは! Gemini 3 Pro Image (Nano banana Pro)を使ったマルチターン画像編集機能を実装していたところ、動いたり動かなかったりするという厄介な問題に遭遇しました。 本記事では、この問題の現象、原因調査の過程、そして解決策を共有します。 問題の現象 実行環境 Google GenAI SDKライブラリ(pip): google-genai 1.56.0 期待する動作 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: 同じ子猫にメガネをかけた画像を生成 実際に起きた現象 1. ユーザー: 「かわいい子猫の画像を生成して」 2. Gemini: 茶色の子猫の画像を生成 3. ユーザー: 「この子にメガネをかけて」 4. Gemini: メガネをかけた女の子の画像を生成

By Qualiteg プロダクト開発部
【出展報告】TOKYO DIGICONX 2026

【出展報告】TOKYO DIGICONX 2026

こんにちは! 先日、「TOKYO DIGICONX 2026」に出展してまいりましたのでレポートさせていただきます! TOKYO DIGICONX 2026 TOKYO DIGICONX 2026は、2026年1月8日(木)~10日(土)に東京ビッグサイト 南3・4ホールで開催された、XR・メタバース・AI・Web3をテーマにした総合展示会です。 正式名称は「第3回 TOKYO XR・メタバース&コンテンツビジネスワールド」で、東京都、XRコンソーシアム、Metaverse Japan、東京商工会議所で構成されるXR・メタバース等産業展実行委員会が主催しています。 180社以上のスタートアップや企業が出展し、ビジネスデイ(8日・9日)とパブリックデイ(10日)の3日間にわたり、XR・メタバース・AI分野の最前線を体感できるイベントとなりました。 冬の東京ビッグサイト 新年明けて間もない1月の東京ビッグサイト。お正月気分もそこそこに、気合を入れて会場入りしました�

By Qualiteg ビジネス開発本部 | マーケティング部
コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

コーディングエージェントの現状と未来への展望 【第2回】主要ツール比較と構造的課題

こんにちは! 今回は、コーディングエージェントシリーズ第2回です! 前回の第1回では、2025年12月時点で百花繚乱状態にあるAIコーディングエージェントの全体像を俯瞰しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20

By Qualiteg コンサルティング
LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部