[ChatStream] 時間のかかるモデル読み込みにプログレスバーをつける

[ChatStream] 時間のかかるモデル読み込みにプログレスバーをつける

こんにちは (株)Qualiteg プロダクト開発本部です!
HuggingFace の LLMのモデル読み込み時間ってとても長いですよね、そんなときに、便利なツールをご紹介します。

HuggingFace の LLM モデルはダウンロードするときは、進捗がでるのですが、ひとたびダウンロードしたあとは、読み込むまで短くて数分、長くて数十分待たされます。これはディスクからモデルデータ(weights and bias)を処理しながらGPUのVRAMに読み込む処理に時間がかかるのですが、その読み込み状態がいったいいまどのくらいなのか、これがわからず、ヤキモキしたことは無いでしょうか。
そこでは ChatStreamの便利機能として、以下のように、このモデル読み込み時間のプログレス表示をすることができます。

仕掛けはいたってシンプルで、初回の読み込み実行時に処理時間を計測しておき、2回目、また同じ処理が呼ばれたときはプログレスバーを表示します。

使い方も簡単で、モデルの読み込みを LoadTime でラップするだけで、プログレスバーつきで読み込むことができます

Before

model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)


After

from chatstream import LoadTime
model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

モデル読み込みソースコード全体

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from loadtime import LoadTime

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"

model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

tokenizer = AutoTokenizer.from_pretrained(model_path) # tokenizerはモデル読み込みの後で取得します

ちなみに、本機能は、独立したライブラリとしても提供していますので、ChatStreamをご利用でなくても誰でも自由に使用することが可能です。

以下 loadtime パッケージのご紹介させていただきます

loadtime 使い方

インストール方法

pipを使ってLoadTimeをインストールできます

pip install loadtime

主な機能

  • リアルタイムトラッキング: LoadTimeは読み込みプロセスのリアルタイムトラッキングを提供します。

  • プログレスバー: プログレスバーを表示し、処理がどれだけ完了し、まだどれだけ残っているかを示します。

  • 過去の読み込み時間キャッシュ:
    前回処理した時間をキャッシュしておくため、キャッシュされた情報を使用して、プログレスバーを提供します。

  • カスタマイズ可能な表示: LoadTimeは、自分のメッセージで進捗表示をカスタマイズすることができます。

基本的な使い方

サンプルコードを示します

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from loadtime import LoadTime

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"

model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

tokenizer = AutoTokenizer.from_pretrained(model_path) # tokenizerはモデル読み込みの後で取得します

初期化パラメータ一覧

パラメータ 説明
name 長時間処理の名前を指定します。HuggingFace モデルの読み込み時はモデル名を指定します。
message 表示するメッセージを指定します。省略するとデフォルトのメッセージとなります。
pbar True に設定すると、プログレスバーとパーセンテージが表示されます。
dirname キャッシュ保存先のディレクトリ名を指定します。
hf True に設定すると、HuggingFace のモデル読み込み用の時間表示に使用します。まだモデルデータがディスクにダウンロードされていないときは、HuggingFace のローダーがダウンロード進捗を表示するため、本ライブラリからは表示しません。
fn 長時間処理をする関数を指定します。
fn_print 表示を行う関数を指定します。省略時はコンソールに出力されます。

Read more

LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング