[ChatStream] 時間のかかるモデル読み込みにプログレスバーをつける

[ChatStream] 時間のかかるモデル読み込みにプログレスバーをつける

こんにちは (株)Qualiteg プロダクト開発本部です!
HuggingFace の LLMのモデル読み込み時間ってとても長いですよね、そんなときに、便利なツールをご紹介します。

HuggingFace の LLM モデルはダウンロードするときは、進捗がでるのですが、ひとたびダウンロードしたあとは、読み込むまで短くて数分、長くて数十分待たされます。これはディスクからモデルデータ(weights and bias)を処理しながらGPUのVRAMに読み込む処理に時間がかかるのですが、その読み込み状態がいったいいまどのくらいなのか、これがわからず、ヤキモキしたことは無いでしょうか。
そこでは ChatStreamの便利機能として、以下のように、このモデル読み込み時間のプログレス表示をすることができます。

仕掛けはいたってシンプルで、初回の読み込み実行時に処理時間を計測しておき、2回目、また同じ処理が呼ばれたときはプログレスバーを表示します。

使い方も簡単で、モデルの読み込みを LoadTime でラップするだけで、プログレスバーつきで読み込むことができます

Before

model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)


After

from chatstream import LoadTime
model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

モデル読み込みソースコード全体

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from loadtime import LoadTime

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"

model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

tokenizer = AutoTokenizer.from_pretrained(model_path) # tokenizerはモデル読み込みの後で取得します

ちなみに、本機能は、独立したライブラリとしても提供していますので、ChatStreamをご利用でなくても誰でも自由に使用することが可能です。

以下 loadtime パッケージのご紹介させていただきます

loadtime 使い方

インストール方法

pipを使ってLoadTimeをインストールできます

pip install loadtime

主な機能

  • リアルタイムトラッキング: LoadTimeは読み込みプロセスのリアルタイムトラッキングを提供します。

  • プログレスバー: プログレスバーを表示し、処理がどれだけ完了し、まだどれだけ残っているかを示します。

  • 過去の読み込み時間キャッシュ:
    前回処理した時間をキャッシュしておくため、キャッシュされた情報を使用して、プログレスバーを提供します。

  • カスタマイズ可能な表示: LoadTimeは、自分のメッセージで進捗表示をカスタマイズすることができます。

基本的な使い方

サンプルコードを示します

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from loadtime import LoadTime

model_path = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"

model = LoadTime(name=model_path,
                 fn=lambda: AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16))()

tokenizer = AutoTokenizer.from_pretrained(model_path) # tokenizerはモデル読み込みの後で取得します

初期化パラメータ一覧

パラメータ 説明
name 長時間処理の名前を指定します。HuggingFace モデルの読み込み時はモデル名を指定します。
message 表示するメッセージを指定します。省略するとデフォルトのメッセージとなります。
pbar True に設定すると、プログレスバーとパーセンテージが表示されます。
dirname キャッシュ保存先のディレクトリ名を指定します。
hf True に設定すると、HuggingFace のモデル読み込み用の時間表示に使用します。まだモデルデータがディスクにダウンロードされていないときは、HuggingFace のローダーがダウンロード進捗を表示するため、本ライブラリからは表示しません。
fn 長時間処理をする関数を指定します。
fn_print 表示を行う関数を指定します。省略時はコンソールに出力されます。

Read more

産業交流展2024 に出展いたしました

産業交流展2024 に出展いたしました

こんにちは! 2024年11月21日~11月23日の3日間 東京ビックサイトにて開催された産業交流展2024(リアル展)において、当社のプロダクト・サービスの展示を行いました。 多くの方々に当社ブースへお立ち寄りいただき、誠にありがとうございました! (産業交流展2024のオンライン展示会は 2024年11月29日まで開催中です!) 本ブログでは、展示会当日の様子を簡単にレポートさせていただきます。 展示会の様子 当社ブースは「東京ビジネスフロンティア」パビリオン内に設けていただきました。 当社からは3名体制で、 エンタープライズLLMソリューション「Bestllam 」やLLMセキュリティソリューション「 LLM-Audit」 、経産省認定講座「AI・DX研修」についてデモンストレーションおよびご説明・ご案内をさせていただきました。 さらに、ステラリンク社さまのご厚意により、このかわいい移動式サイネージ「AdRobot」に、当社ブースの宣伝もしていただきました! 特典カード さて、ブースにお立ち寄りの際にお渡しした、Bestllam特典カードの招待コー

By Qualiteg ビジネス開発本部 | マーケティング部
「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

「Windowsターミナル」を Windows Server 2022 Datacenter エディションに手軽にインストールする方法

こんにちは! 本稿はWindows Server 2022 Datacenterエディションに「Windowsターミナル」をインストールする方法のメモです。 ステップバイステップでやるのは少し手間だったので、Powershellにペタっとするだけで自動的にインストールできるよう手順をスクリプト化しました。 管理者権限で開いた Powershell に以下、スクリプトをペタっとすると、後は勝手に「Windowsターミナル」がインストールされます。 (ただしスクリプトの実行結果の保証も責任も負いかねます) なにが手間か 何が手間かというと、Windows Server 2022 では、StoreもApp Installer(winget)もデフォルトではインストールされていないため「Windowsターミナル」をマニュアルでインストールしなければなりませんでした。 そこでペタっとするだけのスクリプト化 管理者権限で開いたPowershellに以下のスクリプトをペタっとすると「Windowsターミナル」が無事インストールされます。 パッケージのダウンロード先には [ユーザ

By Qualiteg プロダクト開発部
産業交流展2024に出展いたします

産業交流展2024に出展いたします

平素は当社事業に格別のご高配を賜り、厚く御礼申し上げます。 以前にもご案内させていただきましたが、この度、株式会社Qualitegは、多くの優れた企業が一堂に会する国内最大級の総合展示会「産業交流展2024」に出展する運びとなりました。 本展示会では、当社の最新のサービス・ソリューションを展示させていただきます。ご来場の皆様に直接ご説明させていただく貴重な機会として、ぜひブースまでお立ち寄りくださいませ 展示会概要 * 名称: 産業交流展2024 * 会期: 2024年11月20日(水)~22日(金) * 会場: 東京ビッグサイト 1・2ホール、アトリウム * 西1ホール 東京ビジネスフロンティアゾーン ビ-15 * 入場料: 無料(事前登録制) 開催時間 * 11月20日(水) 10:00~17:00 * 11月21日(木) 10:00~17:00 * 11月22日(金) 10:00~16:00

By Qualiteg ニュース
Qualitegオリジナル:サービス設計のまとめ方

Qualitegオリジナル:サービス設計のまとめ方

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに スタートアップにおいて、サービス設計は成功を左右する重要な要素です。私たちは新規事業開発コンサルタントとして、長年多くの新規事業の立ち上げに関わってきました。 そして今、自社で新規事業の立ち上げを実施中です。本記事では、効果的なサービス設計のアプローチについて、実践的な観点からお伝えしたいと思います。 1. ユーザー中心の問題定義 サービス設計の第一歩は、解決すべき問題を明確に定義することです。しかし、ここでよくある失敗は、自社の技術やアイデアから出発してしまうことです。代わりに、以下のステップを踏むことをお勧めします: * ターゲットユーザーへの徹底的なインタビュー * 既存の解決策の分析と不足点の特定 * ユーザーの行動パターン

By Join us, Michele on Qualiteg's adventure to innovation