[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の比較方法とは

顧客課題の比較方法について、市場規模調査や自社とのシナジー、実現可能性の検討が重要です。各課題に対し市場の潜在性、自社の既存事業との関連性、技術やコストの面から評価し、最終的に調査結果を得点化して比較することで、参入すべき市場を明確にします。

[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の比較方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


出てきた課題をどのように比較するべきかというお悩みもよくご相談いただきます。今回は顧客課題をどのように比較すべきか、という観点でお話ししたいと思います。

まずは代替ユースケースの市場規模調査を実施

今回抽出されたそれぞれの課題について、課題もしくはそのソリューションによってどのくらいの市場規模か獲得できるのかを調査します。

一見、直接関係の無いようなユースケースに見えたとしても、既にユーザーがその課題に対してお金を払って課題を解決している という観点では、「代替市場あり」 ということができますね。

今回は

「電気自転車の電源が切れてもステーションの位置がわかり、短時間でもきちんと運動した結果もわかってダイエットになると認識してもらうためにはどうするべきか」

を、顧客課題として確認するため、「短時間ダイエット市場」 について、市場規模を調べます。

次は自社の既存事業とのシナジー獲得を

次は、自社の既存事業とのシナジーがどのくらいあるかを検討しましょう。
今回新たに企画するサービスが、自社が保有している既存事業の技術や運営ノウハウ、ユーザー総などの顧客基盤を流用可能かを確認します。

全くすべて新規の領域ですと、自社のノウハウがないため、なかなかサービス企画や市場導入、マーケティングのハードルが上がってしまいます。そのため、自社がこの新規事業をやる意義があるのかという命題に答えるためにも、自社の既存事業とのシナジーについて検討しましょう。

イノベーションの成功には、企業固有の課題と可能性を的確に捉えることが不可欠です。株式会社Qualitegの Innovation-Crossは、企業の内部環境と外部環境を徹底的に分析し、最適な共創を設計するプログラム。業界動向、技術トレンド、競合状況などを多角的に調査し、「自社だけでは解決困難」な課題に対して、外部との協業による革新的なソリューションを提案します。

アイデアワークショップ、ハッカソン企画、最先端AI技術の活用など、多様なアプローチを駆使し、社内外のリソースを最適に組み合わせた価値創造を実現。経験豊富な専門コンサルタントが、御社の課題と可能性を深く理解した上で、確実な成果へと導きます。

続いて、自社の実現可能性について検討を

調査の最後のステップとして重要な実現可能性についてお話ししたいと思います。

そもそも

  • この市場は顧客の支払い性向がありそうなのか=マーケットとして成立しそうなのか
  • 自社が保有している技術でサービス開発ができそうか
  • 自社でできそうにない場合、依頼できる企業はいるのか
  • 依頼できる企業はいくらくらいの費用で対応してくれそうか
  • 開発コストと予想収益を比較して事業の利益が出そうか
  • 自社で提供できそうな販売価格は市場に受け入れられそうか

など、他社を含めた既存事業の有無や、それらの事業展開における課題、ユーザーニーズの確からしさ、ユーザーはどのくらいその課題に対して支払うのかや、自社技術の成熟度などを確認します。

最後に、調査結果を得点化して比較

それら調査結果を表に記入し、得点化して比較します。

a couple of blue and red mailboxes

自社にとって重要である指標を高得点に、それほどでもないものは低得点に設定sるうというように点数化してみましょう。

各種顧客課題やそれに対するソリューション案イメージを踏まえたリストに、自社として大事にしたい項目のそれぞれの得点が見えてくるため、おのずと自社が参入すべき市場があなたにも見えてきますよ。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング