[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の比較方法とは

顧客課題の比較方法について、市場規模調査や自社とのシナジー、実現可能性の検討が重要です。各課題に対し市場の潜在性、自社の既存事業との関連性、技術やコストの面から評価し、最終的に調査結果を得点化して比較することで、参入すべき市場を明確にします。

[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の比較方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


出てきた課題をどのように比較するべきかというお悩みもよくご相談いただきます。今回は顧客課題をどのように比較すべきか、という観点でお話ししたいと思います。

まずは代替ユースケースの市場規模調査を実施

今回抽出されたそれぞれの課題について、課題もしくはそのソリューションによってどのくらいの市場規模か獲得できるのかを調査します。

一見、直接関係の無いようなユースケースに見えたとしても、既にユーザーがその課題に対してお金を払って課題を解決している という観点では、「代替市場あり」 ということができますね。

今回は

「電気自転車の電源が切れてもステーションの位置がわかり、短時間でもきちんと運動した結果もわかってダイエットになると認識してもらうためにはどうするべきか」

を、顧客課題として確認するため、「短時間ダイエット市場」 について、市場規模を調べます。

次は自社の既存事業とのシナジー獲得を

次は、自社の既存事業とのシナジーがどのくらいあるかを検討しましょう。
今回新たに企画するサービスが、自社が保有している既存事業の技術や運営ノウハウ、ユーザー総などの顧客基盤を流用可能かを確認します。

全くすべて新規の領域ですと、自社のノウハウがないため、なかなかサービス企画や市場導入、マーケティングのハードルが上がってしまいます。そのため、自社がこの新規事業をやる意義があるのかという命題に答えるためにも、自社の既存事業とのシナジーについて検討しましょう。

続いて、自社の実現可能性について検討を

調査の最後のステップとして重要な実現可能性についてお話ししたいと思います。

そもそも

  • この市場は顧客の支払い性向がありそうなのか=マーケットとして成立しそうなのか
  • 自社が保有している技術でサービス開発ができそうか
  • 自社でできそうにない場合、依頼できる企業はいるのか
  • 依頼できる企業はいくらくらいの費用で対応してくれそうか
  • 開発コストと予想収益を比較して事業の利益が出そうか
  • 自社で提供できそうな販売価格は市場に受け入れられそうか

など、他社を含めた既存事業の有無や、それらの事業展開における課題、ユーザーニーズの確からしさ、ユーザーはどのくらいその課題に対して支払うのかや、自社技術の成熟度などを確認します。

最後に、調査結果を得点化して比較

それら調査結果を表に記入し、得点化して比較します。

a couple of blue and red mailboxes

自社にとって重要である指標を高得点に、それほどでもないものは低得点に設定sるうというように点数化してみましょう。

各種顧客課題やそれに対するソリューション案イメージを踏まえたリストに、自社として大事にしたい項目のそれぞれの得点が見えてくるため、おのずと自社が参入すべき市場があなたにも見えてきますよ。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


<前の記事  

Read more

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

Model Context Protocol(MCP)入門:いよいよセマンティックWebの世界へ

こんにちは! きょうは話題のMCPについて解説いたします! はじめに 「AIが便利なのはわかるけど、自分のデータにアクセスさせたり、他のアプリと連携させたりするのは難しそう...」 このような悩みを持っている方は多いのではないでしょうか。 実際、従来のAIには大きな壁がありました。トレーニングデータの範囲でしか回答できない、リアルタイム情報にアクセスできない、外部アプリケーションを操作できないなどの制約です。 トレーニングデータの外側にあるデータをうまく検索する技術としてLLM黎明期からRAGとよばれる技術が発展してきました。 データ検索だけではなく、あらゆる分野でAIが半ば自動で連携してくれる技術が登場しました。 それが「Model Context Protocol(MCP)」です。 本記事では、AIと外部ツールの連携を革新的に簡単にするMCPについて、基本から実用まで詳しく解説します。 MCPの本質:AIのための標準インターフェース MCPは、AIモデルと外部ツール・アプリケーションの間の通信を標準化するプロトコルです。これはインターネットの世界でいえば、

By Qualiteg プロダクト開発部
GPUサーバーの最適容量計算: キューイング理論と実践的モデル

GPUサーバーの最適容量計算: キューイング理論と実践的モデル

最大ユーザーサポート数計算ツール 同時に1件のみ処理できるGPU変換サーバーの最大ユーザーサポート数を計算します 処理時間 (t_p) 分/件 1件の変換処理にかかる時間 目標システム利用率 (ρ) 0 〜 1 安定稼働のための目標稼働率(推奨: 0.7〜0.8) ピーク係数 (P_c) 倍 最も混雑する時間帯の平均アクセス倍率 稼働時間 (H) 時間/日 システムが1日に稼働している総時間 アクセス確率 (P_a) 0 〜 1 1人のユーザーが1日にシステムを利用する確率 1ユーザーあたりの変換回数 (F) 回/日 利用する日の平均変換処理回数 計算過程を表示 計算結果 サポート可能な総ユーザー数: 人 計算式: N = (ρ × μ × H) ÷ (P_a

By Qualiteg プロダクト開発部
PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

PyTorch 2.6 のセキュリティ: モデルチェックポイントロードの安全対策

こんにちは! 今日は、魅力的なPyTorchチェックポイントが配られているからと言って無邪気に使っちゃうと、超ヤバイよ、というお話になります。 みなさまモデルチェックポイントをロードする際のセキュリティリスクについて考えたことはありますでしょうか。実はモデルの重みファイルだとばかり思っていたチェックポイントが、思わぬセキュリティホールになる可能性があります。 本記事では、PyTorchのtorch.load関数の安全性と、モデルチェックポイントを適切に扱うための実践的なガイドラインを紹介します。 モデルチェックポイントの隠れた危険性 PyTorchのtorch.load関数は非常に便利な一方で、セキュリティ上の重大なリスクを含んでいます。 その理由は、 * チェックポイント単なるパラメータだけではないよ! チェックポイントファイルには、モデルの重み(weights)だけでなく、クラスや関数など任意のPythonコードを含めることが可能です。 * 実行可能なコードが入ってるよ! これは、チェックポイントが単なる「データファイル」ではなく、Pytho

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

[AI新規事業創出]Qualitegオリジナル、アイデア評価、事業アイデア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 AIを活用した事業アイデア評価と選定方法 | Qualitegオリジナルアプローチ 新規事業の立ち上げは、アイデアの創出から始まりますが、その後の評価と選定プロセスこそが成功の鍵を握ります。Qualitegでは、AIを積極的に活用した独自の評価・選定メソッドを開発し、より客観的かつ多角的な視点でビジネスアイデアを検証しています。今回は、私たちの実践的なアプローチをご紹介します。 AIを活用したアイデア評価の基本フレームワーク 当社のアイデア評価プロセスは、以下の2段階で構成しております。 1. 多次元評価マトリックスによる定量分析 まず、出てきたアイデアについて、ChatGPTなどの大規模言語モデル(LLM)を活用し、以下の8つの評価軸でアイデア

By Join us, Michele on Qualiteg's adventure to innovation