[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の比較方法とは

顧客課題の比較方法について、市場規模調査や自社とのシナジー、実現可能性の検討が重要です。各課題に対し市場の潜在性、自社の既存事業との関連性、技術やコストの面から評価し、最終的に調査結果を得点化して比較することで、参入すべき市場を明確にします。

[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の比較方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


出てきた課題をどのように比較するべきかというお悩みもよくご相談いただきます。今回は顧客課題をどのように比較すべきか、という観点でお話ししたいと思います。

まずは代替ユースケースの市場規模調査を実施

今回抽出されたそれぞれの課題について、課題もしくはそのソリューションによってどのくらいの市場規模か獲得できるのかを調査します。

一見、直接関係の無いようなユースケースに見えたとしても、既にユーザーがその課題に対してお金を払って課題を解決している という観点では、「代替市場あり」 ということができますね。

今回は

「電気自転車の電源が切れてもステーションの位置がわかり、短時間でもきちんと運動した結果もわかってダイエットになると認識してもらうためにはどうするべきか」

を、顧客課題として確認するため、「短時間ダイエット市場」 について、市場規模を調べます。

次は自社の既存事業とのシナジー獲得を

次は、自社の既存事業とのシナジーがどのくらいあるかを検討しましょう。
今回新たに企画するサービスが、自社が保有している既存事業の技術や運営ノウハウ、ユーザー総などの顧客基盤を流用可能かを確認します。

全くすべて新規の領域ですと、自社のノウハウがないため、なかなかサービス企画や市場導入、マーケティングのハードルが上がってしまいます。そのため、自社がこの新規事業をやる意義があるのかという命題に答えるためにも、自社の既存事業とのシナジーについて検討しましょう。

イノベーションの成功には、企業固有の課題と可能性を的確に捉えることが不可欠です。株式会社Qualitegの Innovation-Crossは、企業の内部環境と外部環境を徹底的に分析し、最適な共創を設計するプログラム。業界動向、技術トレンド、競合状況などを多角的に調査し、「自社だけでは解決困難」な課題に対して、外部との協業による革新的なソリューションを提案します。

アイデアワークショップ、ハッカソン企画、最先端AI技術の活用など、多様なアプローチを駆使し、社内外のリソースを最適に組み合わせた価値創造を実現。経験豊富な専門コンサルタントが、御社の課題と可能性を深く理解した上で、確実な成果へと導きます。

続いて、自社の実現可能性について検討を

調査の最後のステップとして重要な実現可能性についてお話ししたいと思います。

そもそも

  • この市場は顧客の支払い性向がありそうなのか=マーケットとして成立しそうなのか
  • 自社が保有している技術でサービス開発ができそうか
  • 自社でできそうにない場合、依頼できる企業はいるのか
  • 依頼できる企業はいくらくらいの費用で対応してくれそうか
  • 開発コストと予想収益を比較して事業の利益が出そうか
  • 自社で提供できそうな販売価格は市場に受け入れられそうか

など、他社を含めた既存事業の有無や、それらの事業展開における課題、ユーザーニーズの確からしさ、ユーザーはどのくらいその課題に対して支払うのかや、自社技術の成熟度などを確認します。

最後に、調査結果を得点化して比較

それら調査結果を表に記入し、得点化して比較します。

a couple of blue and red mailboxes

自社にとって重要である指標を高得点に、それほどでもないものは低得点に設定sるうというように点数化してみましょう。

各種顧客課題やそれに対するソリューション案イメージを踏まえたリストに、自社として大事にしたい項目のそれぞれの得点が見えてくるため、おのずと自社が参入すべき市場があなたにも見えてきますよ。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

NVIDIA GeForce RTX 50xx with CUDA capability sm_120 is not compatible with the current PyTorch installation. が発生したとき

こんにちは、PyTorch 2.6.0 環境で以下のような問題が発生したときの対処方法について解説いたします。 NVIDIA GeForce RTX 5090 with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90. 他のBlackwell GeForce の場合は以下のようなメッセージとなります。 NVIDIA GeForce RTX

By Qualiteg プロダクト開発部
OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

OpenCV cv2.imwrite で発生する「_img.empty()」エラーと「動画安定化」による解決法

こんにちは! 画像処理や動画解析の現場で広く利用されている OpenCV。 しかし実務で動画処理を行っていると、時折以下のようなエラーに遭遇することがあります。 cv2.error: OpenCV(4.11.0) /io/opencv/modules/imgcodecs/src/loadsave.cpp:929: error: (-215:Assertion failed) !_img.empty() in function 'imwrite' このエラーは、cv2.imwrite() に渡された画像が空(None またはサイズ0) の場合に発生します。 一見単純に見える問題ですが、背後には「入力動画の不安定さ」や「並列処理の競合」といった要因が潜んでいることが少なくありません。 本記事では、このエラーの発生原因を掘り下げ、実務で効果のある解決策として 「動画の安定化(正規化)」 を紹介します。 TL;

By Qualiteg プロダクト開発部
発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(前編):Transformerの実装と実践的な技術選択

こんにちは!リップシンク技術シリーズもいよいよ終盤となりました。 前回(第4回)では、LSTMの学習プロセスと限界について詳しく解説しました。限られたデータでも効果的に学習できるLSTMの強みを理解する一方で、長距離依存の処理に限界があることも明らかになりました。そして、この問題を解決する革新的なアプローチとして、すべての位置の情報を同時に参照できるTransformerのSelf-Attention機構を紹介しました。 第5回の今回は、 Transformerの具体的なネットワーク設計から始め、その実装上の課題を明らかにします。(前編※) そして、LSTMとTransformerの長所を組み合わせたハイブリッドアプローチを紹介し、実際の製品開発における技術選択の指針を示します。最後に、感情表現への拡張という次なる挑戦についても触れていきます。(後編※) ※Transformerの仕組みは複雑であるため、第5回は前編と後編に分けて解説させていただく予定です。 1. Transformerベースのネットワーク設計 1.1 全体アーキテクチャ図 では、さっそく、Tran

By Qualiteg 研究部, Qualiteg コンサルティング
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第2回 ドメイン環境の構築

こんにちは、今回はシリーズ第2回ドメイン環境の構築 - 検証環境の構築手順について解説いたします! 連載の構成 第1章:基本概念の理解 - Active DirectoryとKerberos/NTLM認証の基礎 【★今回です★】第2章:ドメイン環境の構築 - 検証環境の構築手順 第3章:クライアントとサーバーのドメイン参加 - ドメイン参加の詳細手順 第4章:プロキシサーバーと統合Windows認証 第5章:ブラウザ設定と認証 - 各ブラウザでの設定方法 第6章:トラブルシューティング - よくある問題と解決方法 第7章:セキュリティとベストプラクティス - 本番環境での考慮事項 第8章:実践的な構成例 - AIセキュリティツールとの統合事例 第2章:ドメイン環境の構築 2.1 ドメイン名の設計 2.1.1 ドメイン名の命名規則 Active Directoryを構築する際、

By Qualiteg コンサルティング