[AI新規事業創出]Qualitegが考える、アイディア出しの前にすべき競合サービス概要調査とは

競合サービス調査はアイディア創出前に重要で、市場ニーズと競合の戦略を理解するために行います。具体的には、サービス内容、価格設定、市場の魅力度や競合のビジネスモデルを詳細に分析し、自社の差別化ポイントを見つけるためです。大手企業は、M&Aの可能性も検討します。

[AI新規事業創出]Qualitegが考える、アイディア出しの前にすべき競合サービス概要調査とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


アイディア創出の前の市場調査ですが、自社ではなかなか調査のケイパビリティがない、時間が取れないなどのお困りごとをお伺いするケースが多いです。

今日は競合サービスの調査をどのようにすべきかというのを解説していきたいと思います。

競合サービス調査の目的とは

アイディアを出す前に、他社がどのようなサービスをいくらくらいの価格で展開し、どのようなビジネスを行っているかを調査することは非常に参考になります。また、競合サービスの状況や提供内容をふまえ、自社がとるべきポジションを検討することが可能ですので、アイディア出しの前には必ず競合サービスの調査をしましょう。

大手企業の場合はM&A余地も確認する

クライアント企業が大手企業様の場合は、私は一般の競合サービス調査に加えて、スタートアップ企業の調査も致します。その理由は、自社で新規サービスをいちから始める前に、スタートアップで既に実施しているサービスについて業務提携したり、M&Aをすることでいち早く自社事業として展開できることが可能だからです。

スタートアップはアイディアはよいが資金力がない、自社販路を拡げられないなどの課題もありますので、大手企業との業務提携について前向きなケースも多いです。このステップでは競合サービスの調達額や調達先を把握し、M&Aの余地を簡易的に確認してみましょう。

person in blue shirt writing on white paper

競合サービス調査の際の論点とは

競合サービス調査で確認すべきポイントは大きく分けると以下の二つです。

  1. 対象の市場やその事業の魅力度は高そうか?
  2. 自社で新規事業として参入する際のポイントは何か?

上記論点に答えられるための回答を見つけるために競合調査をしてみましょう。

対象の市場やその事業の魅力度の確認方法

市場や事業の魅力度という観点では、例えば、市場規模は大きいかを確認するため、直近5年の市場規模や、競合サービスのユーザー数などを確認し、他の類似市場と比較をします。

市場成長性に関しては、市場成長率に加え、本業界の新規参入企業数や、全体のユーザー拡大数などを調査しましょう。

業界の収益性については、一般的なビジネスモデルを確認し、競合他社のIR情報などを見ながら、該当事業の収益性を確認します。

自社で新規事業として参入する際のポイントの確認方法

まず初めに、競合のサービスはどのようなユーザーをターゲットとしているのかを確認しましょう。どのくらいの年代で、年間どのくらいの額をサービスに支払っているのか、ターゲットユーザーの属性情報なども調べてみましょう。

合わせて、一番重要なのが各社のサービス内容の調査です。それぞれがどんな提供価値を実現しているのか、何が差異化のポイントとなり、ユーザーのどのようなニーズにどのような形で答えているのかを明確化し、自社の戦略検討のための参考情報とします。

これらの情報があればあるほど、量が多いほど、アイディア創出時の質が上がりますので、競合他社のセールス担当になれるくらい詳しく情報を収集し、分析できるようにしてみてくださいね。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部