[AI新規事業創出]Qualitegが考える、アイディア出しの前にすべき競合サービス概要調査とは

競合サービス調査はアイディア創出前に重要で、市場ニーズと競合の戦略を理解するために行います。具体的には、サービス内容、価格設定、市場の魅力度や競合のビジネスモデルを詳細に分析し、自社の差別化ポイントを見つけるためです。大手企業は、M&Aの可能性も検討します。

[AI新規事業創出]Qualitegが考える、アイディア出しの前にすべき競合サービス概要調査とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


アイディア創出の前の市場調査ですが、自社ではなかなか調査のケイパビリティがない、時間が取れないなどのお困りごとをお伺いするケースが多いです。

今日は競合サービスの調査をどのようにすべきかというのを解説していきたいと思います。

競合サービス調査の目的とは

アイディアを出す前に、他社がどのようなサービスをいくらくらいの価格で展開し、どのようなビジネスを行っているかを調査することは非常に参考になります。また、競合サービスの状況や提供内容をふまえ、自社がとるべきポジションを検討することが可能ですので、アイディア出しの前には必ず競合サービスの調査をしましょう。

大手企業の場合はM&A余地も確認する

クライアント企業が大手企業様の場合は、私は一般の競合サービス調査に加えて、スタートアップ企業の調査も致します。その理由は、自社で新規サービスをいちから始める前に、スタートアップで既に実施しているサービスについて業務提携したり、M&Aをすることでいち早く自社事業として展開できることが可能だからです。

person in blue shirt writing on white paper

スタートアップはアイディアはよいが資金力がない、自社販路を拡げられないなどの課題もありますので、大手企業との業務提携について前向きなケースも多いです。このステップでは競合サービスの調達額や調達先を把握し、M&Aの余地を簡易的に確認してみましょう。

競合サービス調査の際の論点とは

競合サービス調査で確認すべきポイントは大きく分けると以下の二つです。

  1. 対象の市場やその事業の魅力度は高そうか?
  2. 自社で新規事業として参入する際のポイントは何か?

上記論点に答えられるための回答を見つけるために競合調査をしてみましょう。

企業が直面する課題には、未来への可能性が隠されています。株式会社Qualitegの Innovation-Crossは、現在の課題と未来の可能性を共創で結びつけるプログラム。企業の現状分析を通じて「自社だけでは解決困難」な課題を特定し、その背後にある未来の機会を見出します。

アイデアワークショップやハッカソン企画で創造的なソリューションを探索し、オープンイノベーションやパートナー開拓で外部の革新的リソースを活用。最先端AI技術の適用も含め、課題解決と未来創造を同時に実現する革新的なアプローチを設計します。経験豊富な専門コンサルタントが、御社の課題を未来への跳躍台に変える共創プロセスを導き、今日の問題解決と明日の競争優位確立を両立します。課題の向こうに広がる可能性を、共に切り拓きましょう。

対象の市場やその事業の魅力度の確認方法

市場や事業の魅力度という観点では、例えば、市場規模は大きいかを確認するため、直近5年の市場規模や、競合サービスのユーザー数などを確認し、他の類似市場と比較をします。

市場成長性に関しては、市場成長率に加え、本業界の新規参入企業数や、全体のユーザー拡大数などを調査しましょう。

業界の収益性については、一般的なビジネスモデルを確認し、競合他社のIR情報などを見ながら、該当事業の収益性を確認します。

自社で新規事業として参入する際のポイントの確認方法

まず初めに、競合のサービスはどのようなユーザーをターゲットとしているのかを確認しましょう。どのくらいの年代で、年間どのくらいの額をサービスに支払っているのか、ターゲットユーザーの属性情報なども調べてみましょう。

合わせて、一番重要なのが各社のサービス内容の調査です。それぞれがどんな提供価値を実現しているのか、何が差異化のポイントとなり、ユーザーのどのようなニーズにどのような形で答えているのかを明確化し、自社の戦略検討のための参考情報とします。

これらの情報があればあるほど、量が多いほど、アイディア創出時の質が上がりますので、競合他社のセールス担当になれるくらい詳しく情報を収集し、分析できるようにしてみてくださいね。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部
Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

Anthropic Python SDKのcount_tokens機能が0.75.0~正式版に変わりました:移行ガイド

こんにちは! 本日は Anthropic Claude API を使用するのに便利な Anthropic Python SDK に関する話題です! 2週間ほど前にわりと大きな変更がありましたので、解説いたします。 はじめに 「あれ、client.count_tokens() が動かない...」 Anthropic Python SDKをアップデートしたら、今まで動いていたトークンカウントのコードがエラーになった。そんな経験をされたLLMエンジニアの方も多いのではないでしょうか。 当社のBestllamのように、LLM統合サービスを開発していると、実際にユーザーがどれほどのトークンを使用しているのかを正確に把握することは非常に重要になります。利用料金の計算、コンテキストウィンドウの管理、そしてユーザーへの使用量の可視化など、トークンカウント機能はサービスの根幹を支える機能です。そのため、この機能が突然動かなくなると影響は小さくありません。 ゆえに本番サービスを提供している場合、pip install で気軽にSDKバージョンを上げてはいけません。 さて、Anthropi

By Qualiteg プロダクト開発部
ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

ログを ちょこっと grep するツール "ちょこぐれっぷ" つくりました

こんにちは! 今日はちょこっとしたツールをつくりました。 ログをちょこっとgrepするツールです。もちろん無料。 chocoGrep - ちょこっとgrep!ログフィルタツールちょこっとgrepするならchocoGrep!「error or warning」と書くだけの簡単or/and検索。AIエージェントに渡す前にログを最適化。正規表現不要、インストール不要。chocoGrepQualiteg Inc. Cursor、Devin、Claude Code、ChatGPT——AIコーディングエージェントにエラーログを渡してデバッグを手伝ってもらう。もう日常ですよね。 でも、 * ログを全部貼り付けたら、AIの応答がやたら遅い * 「トークン制限を超えました」と怒られる * 大量のログの中から、AIが的外れな部分に注目してしまう そこで、つくったちょこっとgrepするためのツールです 名付けて ちょこぐれっぷ!chogoGrep! chocoGrepって何? ブラウザで動く、ゆるいgrepツールです。 ログを貼り付けて、検索ワードを入れるだけ。インストール不要

By Qualiteg プロダクト開発部
GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

GPUを使った分散処理で見落としがちなCPUボトルネックとtasksetによる解決法

こんにちは! 複数枚のGPUをつかった並列処理システムを設計しているときCPUについてはあまり考えないでシステムを設計してしまうことがあります。 「機械学習システムの主役はGPUなんだから、CPUなんて、あんまり気にしなくてよいのでは」 いいえ、そうでもないんです。 推論中のあるタイミングに急に動作が遅くなったりするときCPUが原因であることがけっこうあります。 概要(5分で分かる要点) 先日GPUを使った並列処理システムで、予期しないCPUボトルネックが発生し、パフォーマンスが大幅に低下する問題に遭遇しました。 複数のプロセスが異なるGPUを使用しているにも関わらず、処理が極端に遅くなる現象の原因は、処理パイプラインの一部に含まれるCPU集約的な計算処理でした。 問題の症状 * 単一プロセス実行時:正常な速度 * 複数プロセス並列実行時:処理時間が数倍に増加 * GPUリソースに競合なし(nvidia-smiで確認済み) 根本原因 処理パイプラインにGPUに適さないCPU集約的な計算(データ前処理、統計変換など)が含まれており、複数プロセスが同じCP

By Qualiteg プロダクト開発部