[AI数理]徹底的に交差エントロピー(4)

[AI数理]徹底的に交差エントロピー(4)

おはようございます!(株) Qualiteg 研究部です。

今回は、多値分類用の交差エントロピーを計算していきたいと思います!


5章 多値分類用 交差エントロピーの計算 (データ1件対応版)

まず 交差エントロピー関数(標本データ1件ぶんバージョン) を再掲します。

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3、再掲}
$$

$$
t_{k} :頻度, y_{k}:確率
$$

式 \((4.3)\) の 交差エントロピー は 1件の標本データ に \(K\) 個の事象(が起こったか、起こらなかったか)が含まれていました。

サイコロでいえば、1回試行したときに \(K=6\) 通りの目の出方があるということです。それぞれの変数は \(y_{k} :\) 確率、 \(t_{k} :\) 頻度, となりました。

さて、これまでの過程をふまえて、
ここからは、確率 の頭から 分類問題 の頭に切り替えていきたいと思います。

さて、ここで以下のようなニューラルネットワークのモデルを考えます。(モデルの詳細は重要ではないです)

このモデルは画像データを入力すると、その画像が「イヌ」である確率、「キツネ」である確率、「オオカミ」である確率をそれぞれ予測します。

そして、このモデルはまだ何も学習していない状態だとします。

この状態で、とりあえず「イヌ」の画像を入れてみたら、以下のようになりました。

何も学習していない状態なので、このモデルが計算した予測値も正解には遠いですが、「イヌ」に相当する予測値 \(y_{1}\) は \(0.33\)、「キツネ」に相当する予測値 \(y_{2}\) は \(0.32\)、「オオカミ」に相当する予測値 \(y_{3}\) は \(0.35\) となりました。

さて、ここから、このモデルが計算した予測値が正解である確率 \(L\) を考えてみると、この例では、「イヌ」が正解で「キツネ」と「オオカミ」は不正解であることがあらかじめわかっているので、

$$
\begin{aligned}
L = &y_{1}^{1} \cdot y_{2}^{0} \cdot y_{3}^{0}&
\
=&0.33^{1} \times 0.32^{0} \times 0.35^{0}&\
=&0.33&
\end{aligned}
$$

と計算することができます。
(\(0.33\) なので、まだダメなモデルですが、計算上はこうなります。)

このように「イヌ」は正解なので \(1\) 、「キツネ」と「オオカミ」は不正解なので \(0\) とすると、正解、不正解は 正解ラベル \(t_{k}\) 列として以下のように整理できます。

そこで、確率 \(L\) を \(y_{k}\) と \(t_{k}\) であらわすと、

$$
\begin{aligned}
L = &y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}&
\
=&\prod_{k=1}^3 y_{k}^{t_{k}} &\
\end{aligned}
$$

となります。これはサイコロの例でいう 1回の試行あたりの尤度 と同じ式になりますので、ここでもこの計算で導かれた確率を 尤度 と考えましょう。

さらにサイコロの例と同様に、さらに確率 \(L\) に対数をとって 対数尤度 の式を整理すると

$$
\begin{aligned}
\log L =&\log (y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}) & \
\
&対数の公式① 「\log ab = \log a + \log b」 より&\\
=&\log y_{1}^{t_{1}} + \log y_{2}^{t_{2}} + \log y_{3}^{t_{3}}&\
\\
&対数の公式② 「\log a^{b} = b \log a」 より&\\
=&t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}&\
\
=&\sum_{k=1}^{3} t_{k} \log y_{k}&\
\
&t_{k}:正解ラベル、y_{k}:予測値&
\end{aligned}
$$

となります。

今回は 「イヌ」「キツネ」「オオカミ」の3つの分類でしたが、添え字 \(1\) ~ \(3\) を \(K\) に置き換えて \(\sum\) であらわすと、以下のようになります。

$$
\log L = \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.1} \
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:予測値&
\end{aligned}
$$

これが 対数尤度関数 となります。

サイコロの例でも確認済ですが、交差エントロピー \(E\) は対数尤度関数にマイナスをつけたものなので、

$$
E = - \log L
$$

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

これで、学習時につかう 訓練データ 1件 あたりの交差エントロピー関数 \(E\) を定義することができました。

さっそく、 式 \((5.2)\) の交差エントロピー関数 \(E\) に以下のデータを再度つかって訓練データ1件ぶんの交差エントロピー誤差 を計算してみましょう。

$$
\begin{aligned}
\ E = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

この交差エントロピー誤差を損失関数として、損失関数が小さくなるようにモデルの重みパラメータを更新していくのが、基本的なニューラルネットワークの学習となります。

ちなみに、いまは以下のように訓練データ1件ぶんの学習で使う損失関数です。1件の入力データをニューラルネットワークに入力して得られた結果 \(y_{k}\) と正解ラベル \(t_{k}\) から誤差関数として交差エントロピー誤差を計算しました。

今回は、多値分類用交差エントロピーをデータ1件の場合で計算してみました。

次回は、これを N 件に拡張していきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

ChatStream🄬でLlama-3-Elyza-JP-8B を動かす

ChatStream🄬でLlama-3-Elyza-JP-8B を動かす

こんにちは、本日は Llama-3-Elyza-JP-8B を使ってみました。 昨日 2024年6月26日に発表(https://prtimes.jp/main/html/rd/p/000000046.000047565.html)された Llama-3-Elyza-JP-8B は 70B 版では「GPT-4」を上回る性能の日本語LLMといわれています。 今回、当社でも Playground 環境に Llama-3-Elyza-JP-8B を搭載して試してみましたのでご紹介します。 70B(700億パラメータ)版は GPT-4 を上回るとのことですので、8B(80億パラメータ)版はGPT-3.5 と比較してみることにいたしました。 (性能比較は https://note.com/elyza/n/n360b6084fdbd の記事に詳しく書いてあります。) AWQ量子化版を使用してみる 今回は、A4000

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegセレクション:アイディア創造編①Qualiteg式オンラインブレストの活用術

[AI新規事業創出]Qualitegセレクション:アイディア創造編①Qualiteg式オンラインブレストの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 今日は私のお気に入りのブレスト方法である「Qualiteg式オンラインブレスト」の活用術についてお話ししたいと思います。 場所を変えて気分を変えても良いアイディアは生まれない!? よく、「金曜日は1日ブレストしよう!」という上司の掛け声とともに、いつもと違う雰囲気なら良いアイディアも出るかもしれないといってホテルの会議室などを予約されて1日缶詰でブレストしたが、期待する結果が出なかったとおっしゃるクライアントが非常に多いです。 ブレインストーミングは複数の参加者が自由にアイデアを出し合うことで、新しい発想や解決策を見つける手法です。 批判や評価を一時的に排除し、量を重視して多くのアイデアを集めることが目的です。1950年代に広告業界で生まれたこの手法は

By Join us, Michele on Qualiteg's adventure to innovation
[AI新規事業創出]Qualitegが考える、アイディア創造フレームワークを利活用する理由

[AI新規事業創出]Qualitegが考える、アイディア創造フレームワークを利活用する理由

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 アイディア創造を行う際に皆さんどのようなステップで検討されていますか?多くの企業様のコンサルティングをさせていただいている中で、最も多いのが、「突然のブレスト」ですが、どのような事業を行いたいか=誰に何を売っていきたいのかを最初に考えずに思い付きのままに意見を出し合い、結果的に無駄な時間を過ごしてしまい良いアイディアが出なかったとおっしゃる方も多いです。 本日はアイディア創造は思い付きではなく、きちんとフレームワークを利活用すべしと考えるQualitegのメソッドをお伝えしたいと思います。 まず、初めに行うことは 「誰に商品やサービスを提供したいか」を考えることです。 ターゲットユーザーはどのようなことを考えているかを理解し、仮説課題やニーズの確からしさ

By Join us, Michele on Qualiteg's adventure to innovation
推論速度を向上させる Speculative Decoding(投機的デコーディング)とは

推論速度を向上させる Speculative Decoding(投機的デコーディング)とは

こんにちは Qualiteg 研究部です。 投機的デコーディングとは何か? 投機的デコーディングは、大規模言語モデル(LLM)の推論速度を向上させる技術です。 たいていのモデルを1.4~2.0倍程度、高速化できることが報告されています。 このアプローチでは、小さなモデル(ドラフトモデル)を使用して初期の予測を行い、その結果を大きなモデル(ターゲットモデル)が検証することで、全体の推論プロセスを高速化します。 ざっくりいうと、 大きなモデルは計算負荷も高く計算速度も遅いので、まず、小さなモデルで高速に計算したあとで、その計算結果をうまくつかって大きなモデルでの計算負荷をさげ、スピードを向上させようというアイデアです。 基本的に大きなモデルと、小さなモデルはサイズ以外は基本的にまったく同じネットワーク構造をしていることが前提となります。 たとえば 70Bの Llama3 と 8B の Llama3 を組み合わせてつかうイメージです。 当然70B の Llama3 の推論計算のほうが 8B よりも重たくなりますので、小さい8BのLlama3 で先回りして推論計算することで

By Qualiteg 研究部