[AI数理]徹底的に交差エントロピー(4)

[AI数理]徹底的に交差エントロピー(4)

おはようございます!(株) Qualiteg 研究部です。

今回は、多値分類用の交差エントロピーを計算していきたいと思います!


5章 多値分類用 交差エントロピーの計算 (データ1件対応版)

まず 交差エントロピー関数(標本データ1件ぶんバージョン) を再掲します。

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3、再掲}
$$

$$
t_{k} :頻度, y_{k}:確率
$$

式 \((4.3)\) の 交差エントロピー は 1件の標本データ に \(K\) 個の事象(が起こったか、起こらなかったか)が含まれていました。

サイコロでいえば、1回試行したときに \(K=6\) 通りの目の出方があるということです。それぞれの変数は \(y_{k} :\) 確率、 \(t_{k} :\) 頻度, となりました。

さて、これまでの過程をふまえて、
ここからは、確率 の頭から 分類問題 の頭に切り替えていきたいと思います。

さて、ここで以下のようなニューラルネットワークのモデルを考えます。(モデルの詳細は重要ではないです)

このモデルは画像データを入力すると、その画像が「イヌ」である確率、「キツネ」である確率、「オオカミ」である確率をそれぞれ予測します。

そして、このモデルはまだ何も学習していない状態だとします。

この状態で、とりあえず「イヌ」の画像を入れてみたら、以下のようになりました。

何も学習していない状態なので、このモデルが計算した予測値も正解には遠いですが、「イヌ」に相当する予測値 \(y_{1}\) は \(0.33\)、「キツネ」に相当する予測値 \(y_{2}\) は \(0.32\)、「オオカミ」に相当する予測値 \(y_{3}\) は \(0.35\) となりました。

さて、ここから、このモデルが計算した予測値が正解である確率 \(L\) を考えてみると、この例では、「イヌ」が正解で「キツネ」と「オオカミ」は不正解であることがあらかじめわかっているので、

$$
\begin{aligned}
L = &y_{1}^{1} \cdot y_{2}^{0} \cdot y_{3}^{0}&
\
=&0.33^{1} \times 0.32^{0} \times 0.35^{0}&\
=&0.33&
\end{aligned}
$$

と計算することができます。
(\(0.33\) なので、まだダメなモデルですが、計算上はこうなります。)

このように「イヌ」は正解なので \(1\) 、「キツネ」と「オオカミ」は不正解なので \(0\) とすると、正解、不正解は 正解ラベル \(t_{k}\) 列として以下のように整理できます。

そこで、確率 \(L\) を \(y_{k}\) と \(t_{k}\) であらわすと、

$$
\begin{aligned}
L = &y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}&
\
=&\prod_{k=1}^3 y_{k}^{t_{k}} &\
\end{aligned}
$$

となります。これはサイコロの例でいう 1回の試行あたりの尤度 と同じ式になりますので、ここでもこの計算で導かれた確率を 尤度 と考えましょう。

さらにサイコロの例と同様に、さらに確率 \(L\) に対数をとって 対数尤度 の式を整理すると

$$
\begin{aligned}
\log L =&\log (y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}) & \
\
&対数の公式① 「\log ab = \log a + \log b」 より&\\
=&\log y_{1}^{t_{1}} + \log y_{2}^{t_{2}} + \log y_{3}^{t_{3}}&\
\\
&対数の公式② 「\log a^{b} = b \log a」 より&\\
=&t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}&\
\
=&\sum_{k=1}^{3} t_{k} \log y_{k}&\
\
&t_{k}:正解ラベル、y_{k}:予測値&
\end{aligned}
$$

となります。

今回は 「イヌ」「キツネ」「オオカミ」の3つの分類でしたが、添え字 \(1\) ~ \(3\) を \(K\) に置き換えて \(\sum\) であらわすと、以下のようになります。

$$
\log L = \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.1} \
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:予測値&
\end{aligned}
$$

これが 対数尤度関数 となります。

サイコロの例でも確認済ですが、交差エントロピー \(E\) は対数尤度関数にマイナスをつけたものなので、

$$
E = - \log L
$$

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

これで、学習時につかう 訓練データ 1件 あたりの交差エントロピー関数 \(E\) を定義することができました。

さっそく、 式 \((5.2)\) の交差エントロピー関数 \(E\) に以下のデータを再度つかって訓練データ1件ぶんの交差エントロピー誤差 を計算してみましょう。

$$
\begin{aligned}
\ E = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

この交差エントロピー誤差を損失関数として、損失関数が小さくなるようにモデルの重みパラメータを更新していくのが、基本的なニューラルネットワークの学習となります。

ちなみに、いまは以下のように訓練データ1件ぶんの学習で使う損失関数です。1件の入力データをニューラルネットワークに入力して得られた結果 \(y_{k}\) と正解ラベル \(t_{k}\) から誤差関数として交差エントロピー誤差を計算しました。

今回は、多値分類用交差エントロピーをデータ1件の場合で計算してみました。

次回は、これを N 件に拡張していきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

Startup JAPAN 2025 に出展いたしました

Startup JAPAN 2025 に出展いたしました

こんにちは! 2025年5月8日(木)-5月9日(金)に東京ビッグサイトで開催された Startup JAPAN 2025 に出展いたしましたので、簡単にレポートいたします😊 開催概要 出展概要 今回は当社が開発するアバター動画生成AI「MotionVox™」を中心に出展させていただきました! 展示会について簡単にふりかえってみたいとおもいます 当社ブース 当社ブースはこんなかんじです。 今回は、ブースというか、このイーゼルのような雰囲気の木枠にポスターをくっつけるというスタイルでの展示方式でした。 こういう方式ははじめてなので斬新でした。おそらくこの方式で相当なコストダウンを図れておりスタートアップにはうれしいですね。セットアップも数分で終わりました。 会場 今回の会場はビッグサイトの南ホールでした。南ホールは、ビッグサイト入口からすぐそこなので駅から会場までたいして歩かず、疲れずに行くことができアクセスがとても良いです。 ホールは広めですが、ところせましと400社の出展会社がひしめきあっておりスタートアップの勢いのある会場となっており

By Qualiteg ビジネス開発本部 | マーケティング部
GPUサービスで「Segmentation Fault 」に出会ったら~分析から解決までの実践アプローチ~

GPUサービスで「Segmentation Fault 」に出会ったら~分析から解決までの実践アプローチ~

こんにちは! 今日は仮想環境+GPUなサービスにおける「Segmentation Fault」について、分析と対処法について書いてみたいと思います。 Segmentation Faultの本質と特徴 Segmentation Faultは、プログラムが保護されたメモリ領域にアクセスしようとした際にOSが発生させる例外です。 今回は複数のGPUサービス(つまりGPUを使うプロセス)が動作していて、そのうちの1つを再起動したときに発生しました。 毎回発生するわけではありません。むしろ数百回の起動に1回程度ですが、1回でも発生すると絶望的な結果につながります。というのも、1つのGPUサービスの停止が SPOF となってサービス全体に影響が発生します。かつ、1回でも「Segmentation Fault」が発生してしまうと、その原因となったプロセスが二度と起動しなくなる、というやっかいな現象でした。 このように「普段は正常に動作しているのに突然動かなくなる」というのがデバッグを非常に難しくします。 とくにGPU+仮想化の組み合わせで従来のC++アプリよりも発生確率がぐっとあがる印象

By Qualiteg プロダクト開発部
シェルスクリプトからcondaコマンドを活用したいとき

シェルスクリプトからcondaコマンドを活用したいとき

こんにちは! 今日はみんな大好きcondaコマンドについてです。 condaコマンドで仮想環境に入って、何らかの処理をして、戻ってくる ようなシェルスクリプト、バッチタスクをやるときのTipsです。 AI開発において、Anacondaとその中核であるcondaパッケージマネージャーはとっても重宝します。 しかし、シェルスクリプトから自動的にcondaを利用しようとすると、意外なハードルがあります。 本記事では、シェルスクリプトからcondaコマンドを正しく呼び出す方法について解説します。 condaと非対話モードの課題 AnacondaがインストールされているLinux環境において、condaコマンドは通常、.bashrcや.bash_profileなどの設定ファイルによって初期化されます。 なんとなくシェルをつかっていると、このcondaコマンドの初期化を忘れてしまいますが、これらの設定は多くの場合シェルの「対話モード」でのみ有効になるように設計されています。 ゆえにシェルスクリプトのような非対話モードでは、condaコマンドが正しく機能してくれません 例えば、.b

By Qualiteg プロダクト開発部
Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部