[AI数理]徹底的に交差エントロピー(4)

[AI数理]徹底的に交差エントロピー(4)

おはようございます!(株) Qualiteg 研究部です。

今回は、多値分類用の交差エントロピーを計算していきたいと思います!


5章 多値分類用 交差エントロピーの計算 (データ1件対応版)

まず 交差エントロピー関数(標本データ1件ぶんバージョン) を再掲します。

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3、再掲}
$$

$$
t_{k} :頻度, y_{k}:確率
$$

式 \((4.3)\) の 交差エントロピー は 1件の標本データ に \(K\) 個の事象(が起こったか、起こらなかったか)が含まれていました。

サイコロでいえば、1回試行したときに \(K=6\) 通りの目の出方があるということです。それぞれの変数は \(y_{k} :\) 確率、 \(t_{k} :\) 頻度, となりました。

さて、これまでの過程をふまえて、
ここからは、確率 の頭から 分類問題 の頭に切り替えていきたいと思います。

さて、ここで以下のようなニューラルネットワークのモデルを考えます。(モデルの詳細は重要ではないです)

このモデルは画像データを入力すると、その画像が「イヌ」である確率、「キツネ」である確率、「オオカミ」である確率をそれぞれ予測します。

そして、このモデルはまだ何も学習していない状態だとします。

この状態で、とりあえず「イヌ」の画像を入れてみたら、以下のようになりました。

何も学習していない状態なので、このモデルが計算した予測値も正解には遠いですが、「イヌ」に相当する予測値 \(y_{1}\) は \(0.33\)、「キツネ」に相当する予測値 \(y_{2}\) は \(0.32\)、「オオカミ」に相当する予測値 \(y_{3}\) は \(0.35\) となりました。

さて、ここから、このモデルが計算した予測値が正解である確率 \(L\) を考えてみると、この例では、「イヌ」が正解で「キツネ」と「オオカミ」は不正解であることがあらかじめわかっているので、

$$
\begin{aligned}
L = &y_{1}^{1} \cdot y_{2}^{0} \cdot y_{3}^{0}&
\
=&0.33^{1} \times 0.32^{0} \times 0.35^{0}&\
=&0.33&
\end{aligned}
$$

と計算することができます。
(\(0.33\) なので、まだダメなモデルですが、計算上はこうなります。)

このように「イヌ」は正解なので \(1\) 、「キツネ」と「オオカミ」は不正解なので \(0\) とすると、正解、不正解は 正解ラベル \(t_{k}\) 列として以下のように整理できます。

そこで、確率 \(L\) を \(y_{k}\) と \(t_{k}\) であらわすと、

$$
\begin{aligned}
L = &y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}&
\
=&\prod_{k=1}^3 y_{k}^{t_{k}} &\
\end{aligned}
$$

となります。これはサイコロの例でいう 1回の試行あたりの尤度 と同じ式になりますので、ここでもこの計算で導かれた確率を 尤度 と考えましょう。

さらにサイコロの例と同様に、さらに確率 \(L\) に対数をとって 対数尤度 の式を整理すると

$$
\begin{aligned}
\log L =&\log (y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}) & \
\
&対数の公式① 「\log ab = \log a + \log b」 より&\\
=&\log y_{1}^{t_{1}} + \log y_{2}^{t_{2}} + \log y_{3}^{t_{3}}&\
\\
&対数の公式② 「\log a^{b} = b \log a」 より&\\
=&t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}&\
\
=&\sum_{k=1}^{3} t_{k} \log y_{k}&\
\
&t_{k}:正解ラベル、y_{k}:予測値&
\end{aligned}
$$

となります。

今回は 「イヌ」「キツネ」「オオカミ」の3つの分類でしたが、添え字 \(1\) ~ \(3\) を \(K\) に置き換えて \(\sum\) であらわすと、以下のようになります。

$$
\log L = \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.1} \
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:予測値&
\end{aligned}
$$

これが 対数尤度関数 となります。

サイコロの例でも確認済ですが、交差エントロピー \(E\) は対数尤度関数にマイナスをつけたものなので、

$$
E = - \log L
$$

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

これで、学習時につかう 訓練データ 1件 あたりの交差エントロピー関数 \(E\) を定義することができました。

さっそく、 式 \((5.2)\) の交差エントロピー関数 \(E\) に以下のデータを再度つかって訓練データ1件ぶんの交差エントロピー誤差 を計算してみましょう。

$$
\begin{aligned}
\ E = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

この交差エントロピー誤差を損失関数として、損失関数が小さくなるようにモデルの重みパラメータを更新していくのが、基本的なニューラルネットワークの学習となります。

ちなみに、いまは以下のように訓練データ1件ぶんの学習で使う損失関数です。1件の入力データをニューラルネットワークに入力して得られた結果 \(y_{k}\) と正解ラベル \(t_{k}\) から誤差関数として交差エントロピー誤差を計算しました。

今回は、多値分類用交差エントロピーをデータ1件の場合で計算してみました。

次回は、これを N 件に拡張していきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

楽観的ロック vs 悲観的ロック:実際のトラブルから学ぶ排他制御

こんにちは! Qualitegプロダクト開発部です! 「楽観的ロックを実装したのに、まだ競合エラーが出るんですけど...」 これは私たちが実際に経験したことです。 本記事では、楽観的ロックと悲観的ロックの違いを、実際に発生したトラブルを通じて解説します。 抽象的な説明ではなく、 「なぜそれが必要なのか」「どんな問題を解決できるのか」 を実感できる内容を目指します。 目次 1. 問題の背景:並列処理で謎のエラー 2. ロックなしの世界:なぜ競合が起きるのか 3. 楽観的ロックの導入:期待と現実 4. 楽観的ロックの限界:解決できなかった問題 5. 悲観的ロックによる解決 6. 実装時のハマりポイント 7. どちらを選ぶべきか:判断基準 8. まとめ 1. 問題の背景:並列処理で謎のエラー 1.1 システムの概要 私たちが開発していたのは、 複数のワークスペースを切り替えて使用するAPIサーバー でした。 当社AI関係のプロダクトの一部だったのですが、結合テスト兼負荷テストを実行すると、まれに発生してしまっていました。 ユーザーは複数のワーキン

By Qualiteg プロダクト開発部
企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

企業セキュリティはなぜ複雑になったのか? 〜AD+Proxyの時代から現代のクラウド対応まで〜

こんにちは! ChatGPTやClaudeといった生成AIサービスが業務に浸透し始めた今、 「AIに機密情報を送ってしまうリスク」 が新たなセキュリティ課題として浮上しています。 この課題に向き合う中で、私たちは改めて「企業のセキュリティアーキテクチャはどう変遷してきたのか」を振り返る機会がありました。 すると、ある疑問が浮かんできます。 「なんでこんなに複雑になってるんだっけ?」 企業のセキュリティ担当者なら、一度は思ったことがあるのではないでしょうか。 アルファベット3〜4文字の製品が乱立し、それぞれが微妙に重複した機能を持ち、設定は複雑化し、コストは膨らみ続けています。 当社ではAIセキュリティ関連プロダクトをご提供しておりますが、AI時代のセキュリティを考える上でも、この歴史を理解することは重要ではないかと考えました。 本記事では、企業ネットワークセキュリティの変遷を振り返りながら、「なぜこうなったのか」を整理してみたいと思います。 第1章:観測点を集約できた時代 ― オンプレAD + Proxy(〜2010年代前半) 統制しやすかったモデル かつ

By Qualiteg コンサルティング, Qualiteg AIセキュリティチーム
【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

【IT温故知新】WS-* の栄光と黄昏:エンタープライズITはいかにして「実装」に敗北したか

こんにちは。 —— 2003年のSOAから、2026年のAIへ —— この記事は、過去の技術動向を振り返り、そこから学べる教訓について考察してみたものです。 歴史は常に、後から見れば明らかなことが、当時は見えなかったという教訓を与えてくれます。 そして、今私たちが「正しい」と信じていることもまた、20年後には違う評価を受けているかもしれません。 だからこそ、振り返ることには意味があるとおもいます。同じ轍を踏まないために。 はじめに:20年前の熱狂を覚えていますか 2000年代初頭。 私はSOA(サービス指向アーキテクチャ)に本気で取り組んでいました。 当時、SOAは「次世代のエンタープライズアーキテクチャ」として、業界全体が熱狂していました。 カンファレンスに行けば満員御礼、ベンダーのブースには人だかり、書店にも関連の書籍がちらほらと。 SOAP、SOAP with attachments、JAX-RPC、WS-Security、WS-ReliableMessaging、WS-AtomicTransaction... 仕様書の山と格闘する日々でした。 あれから

By Qualiteg コンサルティング
DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

DockerビルドでPythonをソースからビルドするとGCCがSegmentation faultする話

こんにちは!Qualitegプロダクト開発部です! 本日は Docker環境でPythonをソースからビルドした際に発生した、GCCの内部コンパイラエラー(Segmentation fault) について共有します。 一見すると「リソース不足」や「Docker特有の問題」に見えますが、実際には PGO(Profile Guided Optimization)とLTO(Link Time Optimization)を同時に有効にした場合に、GCC自身がクラッシュするケースでした。 ただ、今回はDockerによって問題が隠れやすいという点もきづいたので、あえてDockerを織り交ぜた構成でのPythonソースビルドとGCCクラッシュについて実際に発生した題材をもとに共有させていただこうとおもいます 同様の構成でビルドしている方の参考になれば幸いです TL;DR * Docker内でPythonを --enable-optimizations --with-lto 付きでソースビルドすると GCCが internal compiler error(Segmentati

By Qualiteg プロダクト開発部