[AI数理]徹底的に交差エントロピー(4)

[AI数理]徹底的に交差エントロピー(4)

おはようございます!(株) Qualiteg 研究部です。

今回は、多値分類用の交差エントロピーを計算していきたいと思います!


5章 多値分類用 交差エントロピーの計算 (データ1件対応版)

まず 交差エントロピー関数(標本データ1件ぶんバージョン) を再掲します。

$$
\ - \log L=\sum_{k=1}^{K} t_{k} \log y_{k} \tag{4.3、再掲}
$$

$$
t_{k} :頻度, y_{k}:確率
$$

式 \((4.3)\) の 交差エントロピー は 1件の標本データ に \(K\) 個の事象(が起こったか、起こらなかったか)が含まれていました。

サイコロでいえば、1回試行したときに \(K=6\) 通りの目の出方があるということです。それぞれの変数は \(y_{k} :\) 確率、 \(t_{k} :\) 頻度, となりました。

さて、これまでの過程をふまえて、
ここからは、確率 の頭から 分類問題 の頭に切り替えていきたいと思います。

さて、ここで以下のようなニューラルネットワークのモデルを考えます。(モデルの詳細は重要ではないです)

このモデルは画像データを入力すると、その画像が「イヌ」である確率、「キツネ」である確率、「オオカミ」である確率をそれぞれ予測します。

そして、このモデルはまだ何も学習していない状態だとします。

この状態で、とりあえず「イヌ」の画像を入れてみたら、以下のようになりました。

何も学習していない状態なので、このモデルが計算した予測値も正解には遠いですが、「イヌ」に相当する予測値 \(y_{1}\) は \(0.33\)、「キツネ」に相当する予測値 \(y_{2}\) は \(0.32\)、「オオカミ」に相当する予測値 \(y_{3}\) は \(0.35\) となりました。

さて、ここから、このモデルが計算した予測値が正解である確率 \(L\) を考えてみると、この例では、「イヌ」が正解で「キツネ」と「オオカミ」は不正解であることがあらかじめわかっているので、

$$
\begin{aligned}
L = &y_{1}^{1} \cdot y_{2}^{0} \cdot y_{3}^{0}&
\
=&0.33^{1} \times 0.32^{0} \times 0.35^{0}&\
=&0.33&
\end{aligned}
$$

と計算することができます。
(\(0.33\) なので、まだダメなモデルですが、計算上はこうなります。)

このように「イヌ」は正解なので \(1\) 、「キツネ」と「オオカミ」は不正解なので \(0\) とすると、正解、不正解は 正解ラベル \(t_{k}\) 列として以下のように整理できます。

そこで、確率 \(L\) を \(y_{k}\) と \(t_{k}\) であらわすと、

$$
\begin{aligned}
L = &y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}&
\
=&\prod_{k=1}^3 y_{k}^{t_{k}} &\
\end{aligned}
$$

となります。これはサイコロの例でいう 1回の試行あたりの尤度 と同じ式になりますので、ここでもこの計算で導かれた確率を 尤度 と考えましょう。

さらにサイコロの例と同様に、さらに確率 \(L\) に対数をとって 対数尤度 の式を整理すると

$$
\begin{aligned}
\log L =&\log (y_{1}^{t_{1}} \cdot y_{2}^{t_{2}} \cdot y_{3}^{t_{3}}) & \
\
&対数の公式① 「\log ab = \log a + \log b」 より&\\
=&\log y_{1}^{t_{1}} + \log y_{2}^{t_{2}} + \log y_{3}^{t_{3}}&\
\\
&対数の公式② 「\log a^{b} = b \log a」 より&\\
=&t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}&\
\
=&\sum_{k=1}^{3} t_{k} \log y_{k}&\
\
&t_{k}:正解ラベル、y_{k}:予測値&
\end{aligned}
$$

となります。

今回は 「イヌ」「キツネ」「オオカミ」の3つの分類でしたが、添え字 \(1\) ~ \(3\) を \(K\) に置き換えて \(\sum\) であらわすと、以下のようになります。

$$
\log L = \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.1} \
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:予測値&
\end{aligned}
$$

これが 対数尤度関数 となります。

サイコロの例でも確認済ですが、交差エントロピー \(E\) は対数尤度関数にマイナスをつけたものなので、

$$
E = - \log L
$$

$$
E = - \sum_{k=1}^{K} t_{k} \log y_{k} \tag{5.2}
$$

$$
\begin{aligned}
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

これで、学習時につかう 訓練データ 1件 あたりの交差エントロピー関数 \(E\) を定義することができました。

さっそく、 式 \((5.2)\) の交差エントロピー関数 \(E\) に以下のデータを再度つかって訓練データ1件ぶんの交差エントロピー誤差 を計算してみましょう。

$$
\begin{aligned}
\ E = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

この交差エントロピー誤差を損失関数として、損失関数が小さくなるようにモデルの重みパラメータを更新していくのが、基本的なニューラルネットワークの学習となります。

ちなみに、いまは以下のように訓練データ1件ぶんの学習で使う損失関数です。1件の入力データをニューラルネットワークに入力して得られた結果 \(y_{k}\) と正解ラベル \(t_{k}\) から誤差関数として交差エントロピー誤差を計算しました。

今回は、多値分類用交差エントロピーをデータ1件の場合で計算してみました。

次回は、これを N 件に拡張していきたいとおもいます。

それでは、また次回お会いしましょう!


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

サブスクビジネス完全攻略 第1回~『アープがさぁ...』『チャーンがさぁ...』にもう困らない完全ガイド

なぜサブスクリプションモデルが世界を変えているのか、でもAI台頭でSaaSは終わってしまうの? こんにちは! Qualitegコンサルティングです! 新規事業戦略コンサルタントとして日々クライアントと向き合う中で、ここ最近特に増えているのがSaaSビジネスに関する相談です。興味深いのは、その背景にある動機の多様性です。純粋に収益モデルを改善したい企業もあれば、 「SaaS化を通じて、うちもデジタルネイティブ企業として見られたい」 という願望を持つ伝統的な大企業も少なくありません。 SaaSという言葉が日本のビジネスシーンに本格的に浸透し始めたのは2010年代前半。それから約15年が経ち、今やSaaSは「先進的な企業の証」のように扱われています。 まず SaaSは「サーズ」と読みます。 (「サース」でも間違ではありません、どっちもアリです) ほかにも、 MRR、ARR、アープ、チャーンレート、NRR、Rule of 40…… こうした横文字が飛び交う経営会議に、戸惑いながらも「乗り遅れてはいけない」と焦る新規事業担当者の姿をよく目にします。 しかし一方で、2024

By Qualiteg コンサルティング
ASCII STARTUP TechDay 2025に出展します!

ASCII STARTUP TechDay 2025に出展します!

株式会社Qualitegは、2025年11月17日(月)に東京・浅草橋ヒューリックホール&カンファレンスで開催される「ASCII STARTUP TechDay 2025」に出展いたします。 イベント概要 「ASCII STARTUP TechDay 2025」は、日本のディープテックエコシステムを次のレベルへ押し上げ、新産業を創出するイノベーションカンファレンスです。ディープテック・スタートアップの成長を支えるエコシステムの構築、そして成長・発展を目的に、学術、産業、行政の垣根を越えて知を結集する場として開催されます。 開催情報 * 日時:2025年11月17日(月)13:00~18:00 * 会場:東京・浅草橋ヒューリックホール&カンファレンス * 住所:〒111-0053 東京都台東区浅草橋1-22-16ヒューリック浅草橋ビル * アクセス:JR総武線「浅草橋駅(西口)」より徒歩1分 出展内容 当社ブースでは、以下の3つの主要サービスをご紹介いたします。 1.

By Qualiteg ニュース
大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第4回 プロキシサーバーと統合Windows認証

11月に入り、朝晩の冷え込みが本格的になってきましたね。オフィスでも暖房を入れ始めた方も多いのではないでしょうか。 温かいコーヒーを片手に、シリーズ第4回「プロキシサーバーと統合Windows認証」をお届けします。 さて、前回(第3回)は、クライアントPCやサーバーをドメインに参加させる際の「信頼関係」の確立について深掘りしました。コンピューターアカウントが120文字のパスワードで自動認証される仕組みを理解いただけたことで、今回のプロキシサーバーの話もスムーズに入っていけるはずです。 ChatGPTやClaudeへのアクセスを監視する中間プロキシを構築する際、最も重要なのが「確実なユーザー特定」です。せっかくHTTPS通信をインターセプトして入出力内容を記録できても、アクセス元が「tanaka_t」なのか「yamada_h」なのかが分からなければ、監査ログとしての価値は半減してしまいます。 今回は、プロキシサーバー自体をドメインメンバーとして動作させることで、Kerberosチケットの検証を可能にし、透過的なユーザー認証を実現する方法を詳しく解説します。Windows版Squid

By Qualiteg AIセキュリティチーム
エンジニアリングは「趣味」になってしまうのか

エンジニアリングは「趣味」になってしまうのか

こんにちは! 本日は vibe coding(バイブコーディング、つまりAIが自動的にソフトウェアを作ってくれる)と私たちエンジニアの将来について論じてみたいとおもいます。 ちなみに、自分で作るべきか、vibe codingでAIまかせにすべきか、といった二元論的な結論は出せていません。 悩みながらいったりきたり考えてる思考過程をツラツラと書かせていただきました。 「作る喜び」の変質 まずvibe codingという言葉についてです。 2025年2月、Andrej Karpathy氏(OpenAI創設メンバー)が「vibe coding」という言葉を広めました。 彼は自身のX(旧Twitter)投稿で、 「完全にバイブに身を任せ、コードの存在すら忘れる」 と表現しています。 つまり、LLMを相棒に自然言語でコードを生成させる、そんな新しい開発スタイルを指します。 確かにその生産性は圧倒的です。Y Combinatorの2025年冬バッチでは、同社の発表によれば参加スタートアップの約25%がコードの95%をAIで生成していたとされています(TechCrunch, 2

By Qualiteg プロダクト開発部