[AI数理]徹底的に交差エントロピー(5)

[AI数理]徹底的に交差エントロピー(5)

おはようございます!(株) Qualiteg 研究部です。

今回は、前回から拡張して データN件対応版の多値分類用 交差エントロピー を実際のデータをみながら導いていきたいとおもいます!

6章 多値分類用 交差エントロピー (データN件対応版)

実際の学習では、いちどに複数件の訓練データを入力して得られた複数の結果をまとめて評価するバッチ学習を行うため、複数の訓練データから得られた結果を同時に計算できるバージョンの交差エントロピーも考えておきます。

以下のような複数の訓練データの場合を考えます。

複数の訓練データなので、1件ずつの訓練データを見分けられるように番号をふった データ番号 列を導入しました。みやすくするため正解のデータに背景色をつけています。

この4件のデータを順番にモデルに入れたときの出力を計算すると以下のようになりました。予測値 列を右に追加しています。

さて、この4件の交差エントロピーを求めてみます。

これらのデータから1つずつ交差エントロピーを計算して、その値を合計すれば、4件ぶんの交差エントロピーの合計値を求めることができるので、特に難しいことはなく、1件ずつの交差エントロピーを計算して合計したいとおもいます。

まずは愚直に計算してみます。

1件目のデータの交差エントロピーを計算

1件目のデータの交差エントロピー は以下のようになります。ここで データ番号がわかるように、交差エントロピー \(E\) は \(E_{1}\) としました。

$$
\begin{aligned}
\ E_{1} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= \log 0.33 = -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

2件目のデータの交差エントロピーを計算

同様に、 \(E_{2}\) を計算すると、

$$
\begin{aligned}
\ E_{2} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.30 + 1 \cdot \log 0.36 + 0 \cdot \log 0.34) \
&= \log 0.36 = -0.443697 \
\end{aligned}
$$

3件目のデータの交差エントロピーを計算

同様に、 \(E_{3}\) を計算すると、

$$
\begin{aligned}
\ E_{3} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.37 + 0 \cdot \log 0.31 + 1 \cdot \log 0.32) \
&= \log 0.32 = -0.494850 \
\end{aligned}
$$

4件目のデータの交差エントロピーを計算

同様に、 \(E_{2}\) を計算すると、

$$
\begin{aligned}
\ E_{4} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.34 + 1 \cdot \log 0.33 + 0 \cdot \log 0.33) \
&= \log 0.34 = -0.46852 \
\end{aligned}
$$

具体的な値を入れてみましょう。さきほどのデータ番号 \(i=1\) のデータでみてみましょう。

$$
\begin{aligned}
\boldsymbol{E_{1}} = &- \boldsymbol{t} \cdot \log (\boldsymbol{y})& \
=& -
\begin{pmatrix}
t_{1} \ t_{2} \ t_{3}
\end{pmatrix}
\log
\begin{pmatrix}
y_{1} \ y_{2} \ y_{3}
\end{pmatrix}
&
\\
=& -
\begin{pmatrix}
1 \ 0 \ 0
\end{pmatrix}
\log
\begin{pmatrix}
0.33 \ 0.32 \ 0.35
\end{pmatrix}
&
\\
=& -
\begin{pmatrix}
\log(0.33) \ 0 \ 0
\end{pmatrix}
&
\\
=&
\begin{pmatrix}
-0.481486 \ 0 \ 0
\end{pmatrix}
&
\end{aligned}
$$

さて、1件ずつ計算した4件ぶんの交差エントロピー \(E_{1}\)、\(E_{2}\)、\(E_{3}\)、\(E_{4}\) を合計したものが、4件ぶんの合計交差エントロピーとなります。これを \(E_{sum}\) とすると、

$$
E_{sum} = E_{1} + E_{2} +E_{3} +E_{4}
$$

これを \(\sum\) で表現すると、データ番号を \(i\) として

$$
E_{sum} = \sum_{i=1}^4 E_{i}
$$

となります。

今はデータ件数が 4件でしたが、これを \(N\) 件と一般化すると、

$$
E_{sum} = \sum_{i=1}^N E_{i} \tag{6.1} 
$$

となりますね。

ところで、もともと \(t_{k}\) や \(y_{k}\) は、分類番号を添え字につけており、今回だと「イヌ」「キツネ」「オオカミ」の3つに分類をしたかったので、 \(k={1},k=2,k=3\) としていました。
これは1件ぶんのデータ用としてはこれでよかったのですが、いまは 4件のデータがあるので、 \(t_{k}\) と \(t_{k}\) を一意に特定できるようにするため、データ番号 \(i\) を添え字として追加します。

具体的には以下のように \(t_{k}\) → \(t_{ik}\) 、 \(y_{k}\) → \(y_{ik}\) のように拡張しました。

これで、

  • \(t_{ik}\) は 訓練データの \(i\) 番目のデータの \(k\) 番目の要素
  • \(y_{ik}\) は 訓練データの \(i\) 番目のデータを入力したときのモデルの出力(予測値)の \(k\) 番目の要素

という意味となります。

よって \(i\) 番目のデータの 交差エントロピーは 式 \((5.2)\) に 添え字 \(i\) のを追加した以下のようになります。

$$
E_{i} = - \sum_{k=1}^{K} t_{ik} \log y_{ik} \tag{6.2}
$$

\(式(6.1)\) より

$$
\begin{aligned}
E_{sum} =& \sum_{i=1}^N E_{i} &\
\end{aligned}
$$

なので、データ N 件分を合計した交差エントロピーの合計は以下のようになります。

$$
\begin{aligned}
E_{sum} = & - \sum_{i=1}^N \sum_{k=1}^{K} t_{ik} \log y_{ik} &\
\end{aligned}
$$

上式は \(N\) 件分の合計値ですが、件数が異なっても比較できるように N で割って交差エントロピー \(E_{i}\) の平均をとり、 バッチ版つまり複数データ対応バージョンの交差エントロピー関数 \(E\) は以下のように定義されます。

$$
E = - \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^{K} t_{ik} \log y_{ik} \tag{6.3}
$$

$$
\begin{aligned}
\
& N:データ件数& \
&i:データ番号& \
&K:分類の数& \
&k:分類番号& \
&t_{ik}: i 番目のデータの k 番目の正解ラベル(教師データ)& \
&y_{ik}:i 番目の入力データの出力のうち k 番目 予測値& \
\end{aligned}
$$

ようやく、冒頭に紹介した多値分類用の交差エントロピー関数が定義できました。これを英語では Categorical Cross Entropy と呼びます

今回はいかがでしたでしょうか

無事、データN件対応版の多値分類用 交差エントロピー を導くことができました。
次回は、 二値分類用の交差エントロピーを導いていきたいと思います。


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング
【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

【NPM】クラシックトークンが2025年12月9日に完全廃止されたことに伴うパッケージのインストールエラー(403)と対処法

こんにちは! 本日は2025年12月9日に行われた npm に関する重要なアップデートについて解説いたします! 2025年12月9日、npmがセキュリティ強化のためclassic tokenを完全に無効化しました。 この影響で、プライベートパッケージを使用しているプロジェクトで突然npm installが失敗するケースが発生しています。(パブリックパッケージの使用には影響はありません) 本記事では、実際に遭遇したエラーと解決方法についてみていきたいと思います。 発生した問題 症状 プライベートパッケージ(@your-org/package-name形式)を含むプロジェクトで npm install を実行すると、以下のようなエラーが発生 パターン1: 404エラー npm ERR! code E404 npm ERR! 404 Not Found - GET https://registry.npmjs.org/@your-org/package-name/... npm ERR! 404 '@your-org/package-name@x.x.

By Qualiteg プロダクト開発部