[AI数理]徹底的に交差エントロピー(5)

[AI数理]徹底的に交差エントロピー(5)

おはようございます!(株) Qualiteg 研究部です。

今回は、前回から拡張して データN件対応版の多値分類用 交差エントロピー を実際のデータをみながら導いていきたいとおもいます!

6章 多値分類用 交差エントロピー (データN件対応版)

実際の学習では、いちどに複数件の訓練データを入力して得られた複数の結果をまとめて評価するバッチ学習を行うため、複数の訓練データから得られた結果を同時に計算できるバージョンの交差エントロピーも考えておきます。

以下のような複数の訓練データの場合を考えます。

複数の訓練データなので、1件ずつの訓練データを見分けられるように番号をふった データ番号 列を導入しました。みやすくするため正解のデータに背景色をつけています。

この4件のデータを順番にモデルに入れたときの出力を計算すると以下のようになりました。予測値 列を右に追加しています。

さて、この4件の交差エントロピーを求めてみます。

これらのデータから1つずつ交差エントロピーを計算して、その値を合計すれば、4件ぶんの交差エントロピーの合計値を求めることができるので、特に難しいことはなく、1件ずつの交差エントロピーを計算して合計したいとおもいます。

まずは愚直に計算してみます。

1件目のデータの交差エントロピーを計算

1件目のデータの交差エントロピー は以下のようになります。ここで データ番号がわかるように、交差エントロピー \(E\) は \(E_{1}\) としました。

$$
\begin{aligned}
\ E_{1} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= \log 0.33 = -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

2件目のデータの交差エントロピーを計算

同様に、 \(E_{2}\) を計算すると、

$$
\begin{aligned}
\ E_{2} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.30 + 1 \cdot \log 0.36 + 0 \cdot \log 0.34) \
&= \log 0.36 = -0.443697 \
\end{aligned}
$$

3件目のデータの交差エントロピーを計算

同様に、 \(E_{3}\) を計算すると、

$$
\begin{aligned}
\ E_{3} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.37 + 0 \cdot \log 0.31 + 1 \cdot \log 0.32) \
&= \log 0.32 = -0.494850 \
\end{aligned}
$$

4件目のデータの交差エントロピーを計算

同様に、 \(E_{2}\) を計算すると、

$$
\begin{aligned}
\ E_{4} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.34 + 1 \cdot \log 0.33 + 0 \cdot \log 0.33) \
&= \log 0.34 = -0.46852 \
\end{aligned}
$$

具体的な値を入れてみましょう。さきほどのデータ番号 \(i=1\) のデータでみてみましょう。

$$
\begin{aligned}
\boldsymbol{E_{1}} = &- \boldsymbol{t} \cdot \log (\boldsymbol{y})& \
=& -
\begin{pmatrix}
t_{1} \ t_{2} \ t_{3}
\end{pmatrix}
\log
\begin{pmatrix}
y_{1} \ y_{2} \ y_{3}
\end{pmatrix}
&
\\
=& -
\begin{pmatrix}
1 \ 0 \ 0
\end{pmatrix}
\log
\begin{pmatrix}
0.33 \ 0.32 \ 0.35
\end{pmatrix}
&
\\
=& -
\begin{pmatrix}
\log(0.33) \ 0 \ 0
\end{pmatrix}
&
\\
=&
\begin{pmatrix}
-0.481486 \ 0 \ 0
\end{pmatrix}
&
\end{aligned}
$$

さて、1件ずつ計算した4件ぶんの交差エントロピー \(E_{1}\)、\(E_{2}\)、\(E_{3}\)、\(E_{4}\) を合計したものが、4件ぶんの合計交差エントロピーとなります。これを \(E_{sum}\) とすると、

$$
E_{sum} = E_{1} + E_{2} +E_{3} +E_{4}
$$

これを \(\sum\) で表現すると、データ番号を \(i\) として

$$
E_{sum} = \sum_{i=1}^4 E_{i}
$$

となります。

今はデータ件数が 4件でしたが、これを \(N\) 件と一般化すると、

$$
E_{sum} = \sum_{i=1}^N E_{i} \tag{6.1} 
$$

となりますね。

ところで、もともと \(t_{k}\) や \(y_{k}\) は、分類番号を添え字につけており、今回だと「イヌ」「キツネ」「オオカミ」の3つに分類をしたかったので、 \(k={1},k=2,k=3\) としていました。
これは1件ぶんのデータ用としてはこれでよかったのですが、いまは 4件のデータがあるので、 \(t_{k}\) と \(t_{k}\) を一意に特定できるようにするため、データ番号 \(i\) を添え字として追加します。

具体的には以下のように \(t_{k}\) → \(t_{ik}\) 、 \(y_{k}\) → \(y_{ik}\) のように拡張しました。

これで、

  • \(t_{ik}\) は 訓練データの \(i\) 番目のデータの \(k\) 番目の要素
  • \(y_{ik}\) は 訓練データの \(i\) 番目のデータを入力したときのモデルの出力(予測値)の \(k\) 番目の要素

という意味となります。

よって \(i\) 番目のデータの 交差エントロピーは 式 \((5.2)\) に 添え字 \(i\) のを追加した以下のようになります。

$$
E_{i} = - \sum_{k=1}^{K} t_{ik} \log y_{ik} \tag{6.2}
$$

\(式(6.1)\) より

$$
\begin{aligned}
E_{sum} =& \sum_{i=1}^N E_{i} &\
\end{aligned}
$$

なので、データ N 件分を合計した交差エントロピーの合計は以下のようになります。

$$
\begin{aligned}
E_{sum} = & - \sum_{i=1}^N \sum_{k=1}^{K} t_{ik} \log y_{ik} &\
\end{aligned}
$$

上式は \(N\) 件分の合計値ですが、件数が異なっても比較できるように N で割って交差エントロピー \(E_{i}\) の平均をとり、 バッチ版つまり複数データ対応バージョンの交差エントロピー関数 \(E\) は以下のように定義されます。

$$
E = - \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^{K} t_{ik} \log y_{ik} \tag{6.3}
$$

$$
\begin{aligned}
\
& N:データ件数& \
&i:データ番号& \
&K:分類の数& \
&k:分類番号& \
&t_{ik}: i 番目のデータの k 番目の正解ラベル(教師データ)& \
&y_{ik}:i 番目の入力データの出力のうち k 番目 予測値& \
\end{aligned}
$$

ようやく、冒頭に紹介した多値分類用の交差エントロピー関数が定義できました。これを英語では Categorical Cross Entropy と呼びます

今回はいかがでしたでしょうか

無事、データN件対応版の多値分類用 交差エントロピー を導くことができました。
次回は、 二値分類用の交差エントロピーを導いていきたいと思います。


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部