[AI数理]徹底的に交差エントロピー(5)

[AI数理]徹底的に交差エントロピー(5)

おはようございます!(株) Qualiteg 研究部です。

今回は、前回から拡張して データN件対応版の多値分類用 交差エントロピー を実際のデータをみながら導いていきたいとおもいます!

6章 多値分類用 交差エントロピー (データN件対応版)

実際の学習では、いちどに複数件の訓練データを入力して得られた複数の結果をまとめて評価するバッチ学習を行うため、複数の訓練データから得られた結果を同時に計算できるバージョンの交差エントロピーも考えておきます。

以下のような複数の訓練データの場合を考えます。

複数の訓練データなので、1件ずつの訓練データを見分けられるように番号をふった データ番号 列を導入しました。みやすくするため正解のデータに背景色をつけています。

この4件のデータを順番にモデルに入れたときの出力を計算すると以下のようになりました。予測値 列を右に追加しています。

さて、この4件の交差エントロピーを求めてみます。

これらのデータから1つずつ交差エントロピーを計算して、その値を合計すれば、4件ぶんの交差エントロピーの合計値を求めることができるので、特に難しいことはなく、1件ずつの交差エントロピーを計算して合計したいとおもいます。

まずは愚直に計算してみます。

1件目のデータの交差エントロピーを計算

1件目のデータの交差エントロピー は以下のようになります。ここで データ番号がわかるように、交差エントロピー \(E\) は \(E_{1}\) としました。

$$
\begin{aligned}
\ E_{1} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 1 \cdot \log 0.33 + 0 \cdot \log 0.32 + 0 \cdot \log 0.35) \
&= \log 0.33 = -0.481486 \
\
&K:分類の数, t_{k}:正解ラベル, y_{k}:モデルが計算した予測値&
\end{aligned}
$$

2件目のデータの交差エントロピーを計算

同様に、 \(E_{2}\) を計算すると、

$$
\begin{aligned}
\ E_{2} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.30 + 1 \cdot \log 0.36 + 0 \cdot \log 0.34) \
&= \log 0.36 = -0.443697 \
\end{aligned}
$$

3件目のデータの交差エントロピーを計算

同様に、 \(E_{3}\) を計算すると、

$$
\begin{aligned}
\ E_{3} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.37 + 0 \cdot \log 0.31 + 1 \cdot \log 0.32) \
&= \log 0.32 = -0.494850 \
\end{aligned}
$$

4件目のデータの交差エントロピーを計算

同様に、 \(E_{2}\) を計算すると、

$$
\begin{aligned}
\ E_{4} = &- \sum_{k=1}^{K} t_{k} \log y_{k} &\
&= - ( t_{1} \log y_{1} + t_{2} \log y_{2} + t_{3} \log y_{3}) & \
&= - ( 0 \cdot \log 0.34 + 1 \cdot \log 0.33 + 0 \cdot \log 0.33) \
&= \log 0.34 = -0.46852 \
\end{aligned}
$$

具体的な値を入れてみましょう。さきほどのデータ番号 \(i=1\) のデータでみてみましょう。

$$
\begin{aligned}
\boldsymbol{E_{1}} = &- \boldsymbol{t} \cdot \log (\boldsymbol{y})& \
=& -
\begin{pmatrix}
t_{1} \ t_{2} \ t_{3}
\end{pmatrix}
\log
\begin{pmatrix}
y_{1} \ y_{2} \ y_{3}
\end{pmatrix}
&
\\
=& -
\begin{pmatrix}
1 \ 0 \ 0
\end{pmatrix}
\log
\begin{pmatrix}
0.33 \ 0.32 \ 0.35
\end{pmatrix}
&
\\
=& -
\begin{pmatrix}
\log(0.33) \ 0 \ 0
\end{pmatrix}
&
\\
=&
\begin{pmatrix}
-0.481486 \ 0 \ 0
\end{pmatrix}
&
\end{aligned}
$$

さて、1件ずつ計算した4件ぶんの交差エントロピー \(E_{1}\)、\(E_{2}\)、\(E_{3}\)、\(E_{4}\) を合計したものが、4件ぶんの合計交差エントロピーとなります。これを \(E_{sum}\) とすると、

$$
E_{sum} = E_{1} + E_{2} +E_{3} +E_{4}
$$

これを \(\sum\) で表現すると、データ番号を \(i\) として

$$
E_{sum} = \sum_{i=1}^4 E_{i}
$$

となります。

今はデータ件数が 4件でしたが、これを \(N\) 件と一般化すると、

$$
E_{sum} = \sum_{i=1}^N E_{i} \tag{6.1} 
$$

となりますね。

ところで、もともと \(t_{k}\) や \(y_{k}\) は、分類番号を添え字につけており、今回だと「イヌ」「キツネ」「オオカミ」の3つに分類をしたかったので、 \(k={1},k=2,k=3\) としていました。
これは1件ぶんのデータ用としてはこれでよかったのですが、いまは 4件のデータがあるので、 \(t_{k}\) と \(t_{k}\) を一意に特定できるようにするため、データ番号 \(i\) を添え字として追加します。

具体的には以下のように \(t_{k}\) → \(t_{ik}\) 、 \(y_{k}\) → \(y_{ik}\) のように拡張しました。

これで、

  • \(t_{ik}\) は 訓練データの \(i\) 番目のデータの \(k\) 番目の要素
  • \(y_{ik}\) は 訓練データの \(i\) 番目のデータを入力したときのモデルの出力(予測値)の \(k\) 番目の要素

という意味となります。

よって \(i\) 番目のデータの 交差エントロピーは 式 \((5.2)\) に 添え字 \(i\) のを追加した以下のようになります。

$$
E_{i} = - \sum_{k=1}^{K} t_{ik} \log y_{ik} \tag{6.2}
$$

\(式(6.1)\) より

$$
\begin{aligned}
E_{sum} =& \sum_{i=1}^N E_{i} &\
\end{aligned}
$$

なので、データ N 件分を合計した交差エントロピーの合計は以下のようになります。

$$
\begin{aligned}
E_{sum} = & - \sum_{i=1}^N \sum_{k=1}^{K} t_{ik} \log y_{ik} &\
\end{aligned}
$$

上式は \(N\) 件分の合計値ですが、件数が異なっても比較できるように N で割って交差エントロピー \(E_{i}\) の平均をとり、 バッチ版つまり複数データ対応バージョンの交差エントロピー関数 \(E\) は以下のように定義されます。

$$
E = - \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^{K} t_{ik} \log y_{ik} \tag{6.3}
$$

$$
\begin{aligned}
\
& N:データ件数& \
&i:データ番号& \
&K:分類の数& \
&k:分類番号& \
&t_{ik}: i 番目のデータの k 番目の正解ラベル(教師データ)& \
&y_{ik}:i 番目の入力データの出力のうち k 番目 予測値& \
\end{aligned}
$$

ようやく、冒頭に紹介した多値分類用の交差エントロピー関数が定義できました。これを英語では Categorical Cross Entropy と呼びます

今回はいかがでしたでしょうか

無事、データN件対応版の多値分類用 交差エントロピー を導くことができました。
次回は、 二値分類用の交差エントロピーを導いていきたいと思います。


参考文献
https://blog.qualiteg.com/books/


navigation

Read more

GPUメモリ最適化の深層:初回と最終バッチの特殊性を踏まえた効率的なAI画像処理

GPUメモリ最適化の深層:初回と最終バッチの特殊性を踏まえた効率的なAI画像処理

はじめに こんにちは!Qualitegプロダクト開発部です。 当社では、LLMテクノロジーをベースとしたAIキャラクター、AIヒューマンの研究開発を行っています。そんな中、表情、仕草のように「人間らしさ」をもったバーチャルヒューマンを再現するときには画像生成、画像編集といったAIを活用した画像処理が必要となります。 人と対話するAIヒューマンやバーチャルヒューマンはタイムリーに表情や仕草を生成する必要があるため、複数の画像をフレーム連結してつくるモーション(シンプルにいうと動画)を短時間に生成する必要があります。 このようなとき、AIトレーニングやシンプルな推論とは異なり、いかにGPUの能力を引き出してやるか「GPUの使いこなし術」がミソとなります。 GPUの使いこなし術というと、以前のブログにも連続バッチやダイナミックバッチについてLLM推論のコンテクストで語りましたが、本日は画像処理におけるGPUメモリ最適化、とくに、推論時バッチにおける「初回と最終回」のお作法という少しマニアックな話題について語ってみようとおもいます。 画像処理とGPU GPUを用いた画像

By Qualiteg プロダクト開発部
Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualitegセレクション:アイディア深堀編③RoundRobinの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 Qualitegセレクション、アイディア深堀編もいよいよ第3弾!今回は、複数人でアイディアを発散・深堀する際に効果的な RoundRobin(ラウンドロビン) という手法をご紹介します。ブレインストーミングに行き詰まった時や、多様な視点を取り入れたい時にぜひ活用してみてください。 RoundRobinとは? RoundRobinとは、様々な場面で用いられますが、大抵の場合において「持ち回り」、つまり「何かの役割・出番をたくさんの物事・人員で交替しあう」というような意味で使うことが多いです。 ここでは、参加者全員が順番にアイディアを出し、それを記録していく手法をRoundRobinと呼んでいます。順番に意見を述べることで、発言力の差による偏りをなくし、全

By Join us, Michele on Qualiteg's adventure to innovation
PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

PyTorchバージョンとNVIDIA GPU Compute Capability Level サポート

古いPyTorchコード資産を持っている会社は、昔のコードが最新のPyTorchで動かない!最新のGPUで動かない!ということに遭遇することが多いのでしょうか。 今回は、PyTorchバージョン、対応GPU Capability Level 、対応CUDAバージョンについてまとめてみます。 PyTorchがサポートするGPUの Compute Capability PyTorch バージョン サポートされる Compute Capability (SM) レベル 1.0.0 - 1.3.1 SM_35, SM_37, SM_50, SM_60, SM_61, SM_70 1.4.0 - 1.7.1 SM_37, SM_50,

By Qualiteg プロダクト開発部
Qualitegセレクション:アイディア深堀編②6W2Hの活用術

Qualitegセレクション:アイディア深堀編②6W2Hの活用術

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 本日のテーマは6W2H Qualitegセレクションは、ユーザーエクスペリエンス(UX)向上のためのヒントやツールを紹介するシリーズです。今回は、アイディアをより具体的に、実行可能なレベルまで深堀りする手法として、6W2Hの活用術をご紹介します。 優れたUXを実現するには、ユーザーのニーズを深く理解し、それを満たすサービスやプロダクトを提供することが不可欠です。そのためには、アイディア段階で徹底的に検討し、実現可能性や課題を明確にする必要があります。 今回は、アイディアを深堀りする際に非常に役立つツール「6W2H」について詳しくご紹介します。 6W2Hとは? 6W2Hは、問題解決や状況分析のための強力なフレームワークです。以下の8つの質問から構成さ

By Join us, Michele on Qualiteg's adventure to innovation