[AI新規事業創出]Qualiteg流、顧客課題仮説探索インタビューをベースにした顧客課題設定とは

新規事業開発のコンサルティングにおいて、多くの方がすぐにアイディア出しを行いたがる傾向にあります。実際は顧客の課題を把握し、ファクトに基づいたアプローチが質の高い企画につながります。このプロセスには顧客のニーズの再確認、インサイトの抽出、そして「How Might We」というフレームワークを用いた課題の発散が含まれます。

[AI新規事業創出]Qualiteg流、顧客課題仮説探索インタビューをベースにした顧客課題設定とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


新規事業開発のコンサルティングさせていただいている中で、皆さんやはり、アイディア出しをすぐにやりたいと焦っておられる方が多いです。

しかし、そのアイディアを出すために、顧客が何を課題としているか、ファクトをもとに考えていく必要があります。

本日は、顧客の課題をどのように考え、選定していくか、そして本取組で着目し、解決すべき課題を仮説をどうやって検討するべきかという手法についてお話させていただきたいと思います。

まずは、問いの確認を実施する

初めに検討すべき項目は「問いの確認」です。アイディア出しの前に、調査などで発見した問題やニーズの再確認をしましょう。

ここでは、顧客インサイトの抽出方法について解説します。

man holding his chin facing laptop computer

電気自転車レンタルサービスを例に考えてみましょう。

例えば、

電気自転車をレンタルしたいと思って借りてみたが、充電された電気量が少なかった

というファクトがあったとしましょう。

そのファクトから顧客のインサイト(=こういう状態だったらいいのになと思う状態や、不安材料などの心の声)を想像して書いていきます。

この場合

もっと電気があったら、1回のレンタルで目的地まで行けるのになあ
途中で電気がなくなったら、自転車が重くなって動かなくなるのではないのだろうか

このようなユーザーの心の声が聞こえてくると思います。それらをユーザーの「問い」であると認識しましょう。

株式会社Qualitegの Innovation-Crossは、イノベーション共創の全プロセスをカバーする総合支援プログラムです。企業の現状分析に基づく精緻な戦略立案から、実行計画の策定、オープンイノベーションやパートナー開拓の実践、そして成果の評価・改善まで、革新創出の全工程を一貫してサポート。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多彩なサービスメニューを通じて、「自社だけでは実現困難」な革新を、外部との協業によって確実に実現します。戦略と実行の両面で豊富な経験を持つ専門コンサルタントが、御社のイノベーション創出を総合的に支援し、社内外の知恵を融合させた新たな価値創造へと導きます。共創イノベーションのワンストップ・ソリューションを、ぜひご活用ください。

次は問いの発散をしてみましょう

ここではHow Might Weというデザインシンキングの問いを定義するフレームワークを活用します。

「How Might We」を日本語に訳すと「どのようにして私たちは〜できるか」となります。しかし、直訳だとなかなかイメージがわかないので、Qualitegでは以下のようなフレームワークとして活用しています。

どうしたら、我々は 「誰」 の為に、「何」を実現してその課題を解決や改善をすることができるだろうか。

このフレームワークに当てはめて「問いの発散」をしてみましょう。

「どうしたら我々は、いつも自社サービスを使ってくださっているユーザー向けに、遠くの目的地までレンタル電動自転車を使ってもらうことができるのだろうか。」
「どうしたら我々は、初めて自社サービスを使いたいと思ってくださる顧客向けに、途中で電気がなくなったら自転車が重くなって動かなくなるのではないかという不安を取り除くことができるのだろうか」

このような形で、顧客インタビューの結果などのファクトをもとに、顧客の課題を出すことができます。

ここがポイントですが、このフェーズでは課題の良し悪しは判断する必要はなく、たくさん課題を抽出することを目的としております。次のフェーズでその課題のうちどの課題を選び、自社の解決策としていくべきかを考えていきましょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

発話音声からリアルなリップシンクを生成する技術 第2回:AIを使ったドリフト補正

こんにちは! 前回の記事では、当社のMotionVoxで使用している「リップシンク」技術について、wav2vecを用いた音声特徴量抽出の仕組みを解説しました。音声から正確な口の動きを予測するための基礎技術について理解いただけたかと思います。 今回は、その続編として、リップシンク制作における重要な技術的課題である「累積ドリフト」に焦点を当てます。wav2vecで高精度な音素認識ができても、実際の動画制作では複数の音声セグメントを時系列に配置する際、わずかなタイミング誤差が蓄積して最終的に大きなずれとなる現象が発生します。 本記事では、この累積ドリフトのメカニズムと、機械学習を活用した最新の補正技術について、実際の測定データを交えながら詳しく解説していきます。前回のwav2vecによる特徴抽出と今回のドリフト補正技術を組み合わせることで、MotionVoxがどのように高品質なリップシンクを実現しているのか、その全体像が見えてくるはずです。 累積ドリフトとは何か 基本概念 累積ドリフトとは、個々の音声セグメントが持つ微小なタイミング誤差が、時間の経過とともに蓄積していく現象で

By Qualiteg 研究部
AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

AIエージェント時代の新たな番人「ガーディアンエージェント」とは?

こんにちは!今日は先日ガートナーが発表したガーディアンエージェントについて解説します ガートナーの公式定義 ハイプカーブで有名なガートナーは2025年6月に、ガーディアンエージェントに関する見解を発表しました。ガーディアン・エージェントとは、AIとの安全で信頼できるやりとりを支援するために設計されたAIベースのテクノロジです。 ざっくりいうと、 「AIエージェントが来るよ」と予言したガートナー社は、次は、「ガーディアンエージェントが来るよ」と予言しました。なぜガーディアンエージェントが来るのでしょうか?本稿では、そのあたりを考察していきたいと思います。 なぜ今、AIの「監視役」が必要なのか 2025年、私たちは本格的なAIエージェント時代の入り口に立っています。AIが単なるツールから、自律的に判断し行動する「エージェント」へと進化する中で、新たな課題が浮上しています。 従来のAIとエージェント型AIの違い さて、ガーディアンエージェントが必要になる理由として、生成AI(以後AIと呼びます)の急速な進化があげられます。従来のAIとエージェント型AIの違いを思い出

By Qualiteg コンサルティング
LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

LLM推論基盤プロビジョニング講座 第4回 推論エンジンの選定

こんにちは!前回までの講座では、LLMサービス構築に必要なリクエスト数の見積もりや、使用モデルの推論時消費メモリ計算について詳しく解説してきました。今回は7ステッププロセスの4番目、「推論エンジンの選定」について詳しく掘り下げていきます。 推論エンジンとは何か 推論エンジンとは、GPU上でLLMモデルの推論計算(テキスト生成)を効率的に行うために設計された専用のソフトウェアプログラムです。一般的なディープラーニングフレームワーク(PyTorch、TensorFlowなど)でも推論は可能ですが、実運用環境では専用の推論エンジンを使用することで、大幅なパフォーマンス向上とリソース効率化が期待できます。 推論エンジンは単なる実行環境ではなく、様々な最適化技術を実装しています。特定のモデルアーキテクチャに特化した最適化機能を実装したものや、推論速度の高速化に特化したもの、前回解説したKVキャッシュのメモリ効率化機能を備えたものなど、それぞれ特徴が異なります。そのため、自社で採用したLLMモデルや運用環境、要件に合致した推論エンジンを選定することが重要です。 推論エンジン選定のアプロ

By Qualiteg コンサルティング
発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

発話音声からリアルなリップシンクを生成する技術 第1回:音素とwav2vec

こんにちは! 今日は当社のMotionVox でも実際に使っている「リップシンク」技術について総合的に解説してみたいとおもいます。 音声に合わせて自然な口の動きを生成するリップシンク技術は、AIアバターや3Dアニメーション制作においても重要な技術です。 本記事では、最新のディープラーニング技術を活用したリップシンク学習の基礎から実装まで、技術的な観点から詳しく解説します。 1. リップシンク学習の基礎概念 1.1 問題設定 リップシンク学習とは、音声データから対応する口の動きを予測する回帰問題ととらえることができます f: 音声特徴量(t) → 口の動きパラメータ(t) この問題のコアは 音韻(音の特徴)と視素(視覚的な口の形)の対応関係を学習する ことにあります。 1.2 音韻-視素マッピングの複雑性 ただし! 人間の発話における音と口の形の関係は、単純な1対1マッピングではないんです。 同じ音でも文脈で変化 「あ」の発音でも: - 「か」の後の「あ」→ 口がやや狭めから開く - 「ん」の後の「あ」→ 口が閉じた状態から大きく開く 調音結合

By Qualiteg 研究部, Qualiteg コンサルティング