[AI新規事業創出]Qualiteg流、顧客課題仮説探索インタビューをベースにした顧客課題設定とは

新規事業開発のコンサルティングにおいて、多くの方がすぐにアイディア出しを行いたがる傾向にあります。実際は顧客の課題を把握し、ファクトに基づいたアプローチが質の高い企画につながります。このプロセスには顧客のニーズの再確認、インサイトの抽出、そして「How Might We」というフレームワークを用いた課題の発散が含まれます。

[AI新規事業創出]Qualiteg流、顧客課題仮説探索インタビューをベースにした顧客課題設定とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


新規事業開発のコンサルティングさせていただいている中で、皆さんやはり、アイディア出しをすぐにやりたいと焦っておられる方が多いです。

しかし、そのアイディアを出すために、顧客が何を課題としているか、ファクトをもとに考えていく必要があります。

本日は、顧客の課題をどのように考え、選定していくか、そして本取組で着目し、解決すべき課題を仮説をどうやって検討するべきかという手法についてお話させていただきたいと思います。

まずは、問いの確認を実施する

初めに検討すべき項目は「問いの確認」です。アイディア出しの前に、調査などで発見した問題やニーズの再確認をしましょう。

ここでは、顧客インサイトの抽出方法について解説します。

man holding his chin facing laptop computer

電気自転車レンタルサービスを例に考えてみましょう。

例えば、

電気自転車をレンタルしたいと思って借りてみたが、充電された電気量が少なかった

というファクトがあったとしましょう。

そのファクトから顧客のインサイト(=こういう状態だったらいいのになと思う状態や、不安材料などの心の声)を想像して書いていきます。

この場合

もっと電気があったら、1回のレンタルで目的地まで行けるのになあ
途中で電気がなくなったら、自転車が重くなって動かなくなるのではないのだろうか

このようなユーザーの心の声が聞こえてくると思います。それらをユーザーの「問い」であると認識しましょう。

株式会社Qualitegの Innovation-Crossは、イノベーション共創の全プロセスをカバーする総合支援プログラムです。企業の現状分析に基づく精緻な戦略立案から、実行計画の策定、オープンイノベーションやパートナー開拓の実践、そして成果の評価・改善まで、革新創出の全工程を一貫してサポート。

アイデアワークショップ、ハッカソン企画、AI技術活用など、多彩なサービスメニューを通じて、「自社だけでは実現困難」な革新を、外部との協業によって確実に実現します。戦略と実行の両面で豊富な経験を持つ専門コンサルタントが、御社のイノベーション創出を総合的に支援し、社内外の知恵を融合させた新たな価値創造へと導きます。共創イノベーションのワンストップ・ソリューションを、ぜひご活用ください。

次は問いの発散をしてみましょう

ここではHow Might Weというデザインシンキングの問いを定義するフレームワークを活用します。

「How Might We」を日本語に訳すと「どのようにして私たちは〜できるか」となります。しかし、直訳だとなかなかイメージがわかないので、Qualitegでは以下のようなフレームワークとして活用しています。

どうしたら、我々は 「誰」 の為に、「何」を実現してその課題を解決や改善をすることができるだろうか。

このフレームワークに当てはめて「問いの発散」をしてみましょう。

「どうしたら我々は、いつも自社サービスを使ってくださっているユーザー向けに、遠くの目的地までレンタル電動自転車を使ってもらうことができるのだろうか。」
「どうしたら我々は、初めて自社サービスを使いたいと思ってくださる顧客向けに、途中で電気がなくなったら自転車が重くなって動かなくなるのではないかという不安を取り除くことができるのだろうか」

このような形で、顧客インタビューの結果などのファクトをもとに、顧客の課題を出すことができます。

ここがポイントですが、このフェーズでは課題の良し悪しは判断する必要はなく、たくさん課題を抽出することを目的としております。次のフェーズでその課題のうちどの課題を選び、自社の解決策としていくべきかを考えていきましょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

AIがよく間違える「クロージャ問題」の本質と対策

AIがよく間違える「クロージャ問題」の本質と対策

こんにちは! 本日は「クロージャ問題」に関する話題となります。 Pythonでループ内に関数を定義したことはありますか? もしあるなら、あれれ?な挙動に遭遇したことがあるかもしれません。 本稿では、Pythonプログラマーなら一度は経験する「クロージャ問題」について、初心者にもわかりやすく解説してみたいとおもいます クロージャとは何か? そもそも ”クロージャ” とは何でしょうか。 クロージャ(closure)とは、関数が自分の定義されたスコープの変数を覚えて持ち運ぶ仕組み のことです。 もう少し分解すると、次の2つがポイントとなります 1. 内側の関数が、外側の関数の変数を使える 2. 外側の関数が終了しても、その変数は生き続ける 普通の関数とクロージャ―を使った関数を比較してみましょう 普通の関数との比較 まずは普通の関数から、 def add(x, y): return x + y print(add(3, 5)) # 8 print(add(3, 7)

By Qualiteg プロダクト開発部
フリーランスHub様にQualiteg Blogをご紹介いただきました

フリーランスHub様にQualiteg Blogをご紹介いただきました

この度、フリーランス向け案件検索サービス「フリーランスHub」様の特集記事「トレンドをキャッチアップ!AIに関する情報が得られるメディア・ブログまとめ」にて、弊社が運営する「Qualiteg Blog」をご紹介いただきました。 掲載記事について フリーランスHub様の記事では、AI技術の最前線で活躍するエンジニアや開発者の方々に向けて、価値ある情報源となるメディア・ブログが厳選して紹介されています。 その中で、Qualiteg Blogを「AI技術の専門知識を実践的なビジネス活用につなげる貴重な情報源」として取り上げていただきました。 特に以下の点を評価いただいております * 実践的なビジネス活用事例の提供 AI新規事業創出や事業選定方法など、経営者やビジネスリーダーが直面する課題への具体的な解決策 * 技術的な深掘りコンテンツ リップシンク技術など、実際のサービスで使用されている技術の開発現場目線での詳細な解説 * 多様な情報発信 代表執筆記事、AIトピックス、講演会動画など、幅広いフォーマットでの情報提供 今後も価値ある情報発

By Qualiteg ニュース
PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

PyTorchの重いCUDA処理を非同期化したらメモリリークした話と、その解決策

こんにちは!Qualitegプロダクト開発部です! 今回は同期メソッドを非同期メソッド(async)化しただけなのに、思わぬメモリリーク※に見舞われたお話です。 深層学習モデルを使った動画処理システムを開発していた時のことです。 「処理の進捗をリアルタイムでWebSocketで通知したい」という要件があり、「単にasync/awaitを使えばいいだけでしょ?」と軽く考えていたら、思わぬ落とし穴にはまりました。 プロ仕様のGPUを使っていたにも関わらず、メモリ不足でクラッシュしてしまいました。 この記事では、その原因と解決策、そして学んだ教訓を詳しく共有したいと思います。同じような問題に直面している方の参考になれば幸いです。 ※ 厳密には「メモリリーク」ではなく「メモリの解放遅延」ですが、 実用上の影響は同じなので、この記事では便宜上「メモリリーク」と表現します。 背景:なぜ進捗通知は非同期である必要があるのか モダンなWebアプリケーションの要求 最近のWebアプリケーション開発では、ユーザー体験を向上させるため、長時間かかる処理の進捗をリアルタイムで表示することが

By Qualiteg プロダクト開発部
ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

ゼロトラスト時代のLLMセキュリティ完全ガイド:ガーディアンエージェントへの進化を見据えて

こんにちは! 今日はセキュリティの新たな考え方「ゼロトラスト」とLLMを中心としたAIセキュリティについて解説いたします! はじめに 3つのパラダイムシフトが同時に起きている いま、企業のIT環境では3つの大きな変革が起ころうとしています。 1つ目は「境界防御からゼロトラストへ」というセキュリティモデルの転換。 2つ目は「LLMの爆発的普及」による新たなリスクの出現。 そして3つ目は「AIエージェント時代の到来」とそれに伴う「ガーディアンエージェント」という新概念の登場です。 これらは別々の出来事のように見えて、実は密接に関連しています。本記事では、この3つの変革がどのように結びつき、企業がどのような対策を取るべきかを解説いたします 目次 1. はじめに:3つのパラダイムシフトが同時に起きている 2. 第1の変革:ゼロトラストという新しいセキュリティ思想 3. 第2の変革:LLM時代の到来とその影響 4. 第3の変革:AIエージェントとガーディアンエージェント 5. 3つの変革を統合する:実践的なアプローチ 6. 実装のベストプラクティス 7. 日本

By Qualiteg コンサルティング