[AI新規事業創出]Qualitegが考える、自身の成果実証のための定量的ゴール定義とは

新規事業のゴール設定では、多くのクライアントが数値目標を設定していないため、後に困難を経験することが多いです。定量的ゴール定義は、具体的な数値を用いて目標を設定し、目標達成の進捗を明確に測定する手法です。これにより、モチベーションの向上、効率的なリソース配分、成果の最大化に寄与します。事業初期に数値目標を設定することの重要性を解説しています。

[AI新規事業創出]Qualitegが考える、自身の成果実証のための定量的ゴール定義とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


アイディアが決まってないのに数字の目標ってどうやって決めるの?というご質問を受けることもありますが、そもそも新規事業検討の際にゴール設定はもちろん、それらの数値目標を設定されていないクライアントが多く、あとでつらい経験をされる方も多いのが現状です。

本日は、早期段階での定量的ゴール定義の必要性とその手法について解説していきたいと思います。

定量的ゴール定義とは

定量的ゴール定義は、具体的な数値を用いて目標を設定する手法です。これにより、目標達成の進捗を客観的かつ明確に測定することが可能になります。

例えば、「新規顧客獲得数を毎月50人にする」といった具体的な数字を目標に設定します。定量的ゴールを設定することで、モチベーションの向上、効率的なリソース配分、成果の最大化に寄与することができる重要な指標となることでしょう。

具体的な決め方とは

あくまでもこの新規事業を何のためにやるのか、それらを達成したとみなす基準は測れるものとして何が何件なのかあらかじめ決めることが重要です。

ここでは自社の電気自転車サービスA社の事例を使って解説していきましょう。


A社は都市部で忙しく働くビジネスマンの生活充実度を向上させるサービスを検討することになり、アイディアの方向性としては以下の3点で検討しています。

  • オフィスや自宅などで健康維持ができるサービス
  • 仕事の疲れをとり、リフレッシュできるサービス
  • 自身のキャリアアップのためにサポートができるサービス

新規事業の事業化検討にあたり、以下3点を事業化判断のポイントとすることになりました。

  1. 日本ではまだ大手が参入していないが、市場ニーズがあり、成長が見込める市場であること
  2. 自社の強みを活かしてビジネスシナジーを創出し、他社との差異化が図れるサービス案であること
  3. 今年度中にサービスを市場導入できること

現段階ではサービス案は確定していないので、事業化判断のための市場性などに関して定量的目標を設定するとよいでしょう。

  • 市場成長性があることを証明するため、CAGR5%以上を2023年~5年間見込まれること。
  • 事業化承認後、年度内にサービスを市場導入し、翌年度には月間利用者数1万人以上を達成すること。
  • 導入2年目以降の年間売上目標は年間1億円以上を目標にすること。
  • 市場導入後3年以内は赤字でも構わないが、4年目以降に黒字化を目指すこと。

このように、本事業がどの程度の事業規模を狙っており、いつくらいに投資回収できる必要があるかを事業責任者とすり合わせするために数値化した目標を提示して議論してみてください。

変化の激しいビジネス環境では、革新の機会は容易には見えてきません。株式会社Qualitegの Innovation-Crossは、企業が見落としていた革新の機会を共創によって発見するプログラム。多角的な現状分析と業界動向調査を通じて、「自社だけでは気づきにくい」ビジネスチャンスや技術革新の可能性を可視化します。

アイデアワークショップやハッカソン企画を通じて多様な視点を交差させ、オープンイノベーションやパートナー開拓を通じて外部の知見を取り込むことで、従来の枠組みを超えた機会を創出。最先端AI技術の活用支援も含め、経験豊富な専門コンサルタントが、新たな視点と多様な知恵の融合から生まれる革新的な機会の発見を導きます。見える景色を変えれば、見えてくる未来も変わります。

事前に目標設定をする必要性

クライアント企業のお客様に、事前の数値目標設定をご提案すると9割の方が渋い顔をされます。「自分で数字目標を宣言したら、後で自分の首を絞めるのではないか」と心配される方がほとんどです。

しかし、私たちQualitegでは事業検討されるこのタイミングで数値目標を設定することを強くお勧めいたします。どうなるかわからない新規事業について数字でコミットすることはもちろんプレッシャーになることは理解していますが、数字目標を設定することで、メンバーの士気も上がりますし、事業責任者に対して信頼感を生むことができます。

man in white dress shirt sitting beside woman in black long sleeve shirt

また、一部の大手企業では、成功した新規事業が他の部署の手柄になってしまう、というようなお話もちらほら聞くこともありますので、最初からご自身が企画され、宣言した数字を達成した!と証明できる仕組みをあらかじめ備えておく必要があると考え、このようにアドバイスさせていただいております。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部