[AI新規事業創出]Qualitegが考える、仮説探索、顧客理解のための調査設計と準備方法

アイディア創出の事前準備として、ターゲットユーザーの課題を明らかにし、解決策を提案する方法を解説します。課題探索の目的と目標を定義し、競合の利用者からヒアリングします。また、調査手法と対象ユーザーの選定を明確にし、実際のインタビューでは深い洞察を得るために詳細な質問を繰り返します。

[AI新規事業創出]Qualitegが考える、仮説探索、顧客理解のための調査設計と準備方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


アイディア創出のための事前準備として、ターゲットユーザーの抱えている課題を明らかにして、その解決策を提案する方法についてご説明します。そのターゲットユーザーの課題は何かを明らかにするためにどのような調査をするべきかということについて今日は解説していきたいと思います。

ユーザーの課題探索調査のための目的と目標の明確化

まず初めに行うことは、ユーザーの課題探索調査の目的と目標の明確化です。どのような情報を収集したいのか、調査から何を得たいのかを明確に定義します。この段階で、具体的な研究質問を設定し、調査の範囲と焦点を決定します。

具体的には競合のサービス利用者の課題を聞いて、自社のサービス案とするのであれば、その競合サービスを現在利用していて、支払金額が高い人や、サービスを利用するのをやめた人をヒアリング対象にします。

woman in white long sleeve shirt sitting on red couch

このように、本調査によってどのような結果を得たいか、そのデータを使って何をしたいかというのをこの段階で明確化しましょう。

また、調査手法がインタビュー形式なのか、オンラインアンケート形式なのか、何人くらいにどのような項目を聞くのかもこのタイミングでクリアにしておく必要があります。

これらは、自身の調査目的を明らかにするだけではなくて、調査費用の社内決裁のための事前共有情報としても使えるので、面倒くさがらずにここで一度整理することをお勧めいたします。

対象ユーザーの選定とリクルー

調査の目的ゴールが決まれば次は、対象ユーザーの選定になります。よく調査を楽にするために、部署の人に声をかけてヒアリング対象にしたりするケースが多いですが、Qualitegでは身近な人をヒアリング対象にすることはおすすめせず、調査会社を使うことをお勧めいたします。

不確実性の高い環境下で企業が生き残るには、複数の未来への選択肢を持つことが重要です。株式会社Qualitegの Innovation-Crossは、企業の未来への選択肢を共創によって広げるプログラム。現状分析をもとに、オープンイノベーションやパートナー開拓を通じて「自社だけでは思いつかない」多様な可能性を発掘します。

アイデアワークショップ、ハッカソン企画、最先端AI技術の活用など、多彩なアプローチで社内外の知恵を融合させ、従来の延長線上にない革新的な選択肢を創出。経験豊富な専門コンサルタントが、御社の強みを活かしながら外部との協業による新たな道筋を描き、変化の激しい時代における戦略的柔軟性と競争優位性を高めます。未来への複数の扉を開く—それが私たちの役割です。

理由は明確で、ターゲットユーザーではない、似通った人に声をかけて、お世辞のいいねを言ってもらうことで、本来の目的である、顧客の課題をヒアリングすることができなくなってしまう恐れがあるからです。

このフェーズでは調査対象となるユーザー層を特定し、それらのユーザーがどのように製品やサービスを使用しているかを理解することが必要ですので、現在考えている、競合サービス課題仮説についてヒアリングするため、競合サービスの利用者を調査会社経由でスクリーニングしてもらい、ヒアリングすることをお勧めします。

person writing on white paper

調査対象人数の考え方とインタビュー時間

インタビューをする場合、多くの声を聴きたいのでグループインタビューをしたいというクライアント企業が多いのですが、Qualitegでのおすすめは「デプスインタビュー」となります。調査時間のおすすめは一人当たり60分~90分程度が適正でしょう。人数としては最低3名、できれば5名~7名くらいの方にヒアリングをすることをお勧めしています。

競合のサービスを利用し始めたきっかけ、利用している中で満足しているポイントや不満に思っている点を聞くのがインタビューの目的ですが、その中で機械的にこちらが質問したい内容をどんどん聞いて、Yes,Noで答えてもらうようでは、インタビュー調査をする意味がないのです。

A group of friends at a coffee shop

全ての項目において、なぜなぜ5回のように、Whyの質問を繰り返し、ユーザーがなぜその判断に至ったのか、その時の環境や心理的状況までしっかり掘り下げて聞く必要があります。そのため、最初の20分はアイスブレイクとして使い、信頼感を得て、いろいろ気軽に話してもらえる環境を整えてから、いろいろ聞いていくことで、自身が期待していたような、「真のユーザーの課題」をヒアリングすることができます。

そのため、しっかりした話をするのに30分では難しく、最低60分、できれば90分くらいの時間をかけて探索インタビューを実施することをお勧めしています。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

大企業のAIセキュリティを支える基盤技術 - 今こそ理解するActive Directory 第1回 基本概念の理解

こんにちは! 今回から数回にわたり Active Directory について解説してまいります。 Active Directory(AD:アクティブディレクトリー)は、Microsoft が開発したディレクトリサービスであり、今日の大企業における IT インフラストラクチャーにおいて、もはやデファクトスタンダードと言っても過言ではない存在となっており、組織内のユーザー、コンピューター、その他のリソースを一元的に管理するための基盤として広く採用されています。 AIセキュリティの現実:単独では機能しない ChatGPTやClaudeなどの生成AIが企業に急速に普及する中、「AIセキュリティ」という言葉が注目を集めています。情報漏洩の防止、不適切な利用の検知、コンプライアンスの確保など、企業が取り組むべき課題は山積みです。 しかし、ここで注意しなければいけない事実があります。それは、 AIセキュリティソリューションは、それ単体では企業環境で限定的な効果しか期待できない ということです。 企業が直面する本質的な課題 AIセキュリティツールを導入する際、企業のIT部門

By Qualiteg コンサルティング
自治体総合フェア2025に出展いたしました

自治体総合フェア2025に出展いたしました

こんにちは! 先週開催された自治体総合フェア2025に出展いたしましたので、写真で様子をふりかえりながら簡単にレポートいたします! 自治体総合フェア2025 開催概要 自治体総合フェアは公民連携の総合展示会で今年はは2025/7/16~18まで東京ビッグサイトにて開催されました。 株式会社 Qualiteg の出展内容 当社からは4名体制でAIアバター動画生成サービス「MotionVox™」をはじめ、LLMセキュリティソリューション「LLM-Audit™」、企業・自治体向けセキュアチャットサービス「Bestllam🄬」の展示をさせていただきました。 デモ内容 当日のご紹介内容の一部をご紹介いたします MotionVox™ MotionVox は、まるで、本物の人間のようなフォトリアリスティックなアバター動画を生成するサービスです。 これまでから機能を大幅拡張した MotionVox 2.0 をお披露目いたしました。 MotionVox 2.0では、以下のようなフィーチャーを追加いたしました! * まるで人間! リアリティをさらに向上したアバター *

By Qualiteg ビジネス開発本部 | マーケティング部
発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

発話音声からリアルなリップシンクを生成する技術 第3回:wav2vec特徴量から口形パラメータへの学習

こんにちは! 前回までの記事では、 * wav2vecを用いた音声特徴量抽出の仕組み(第1回)と、 * リップシンク制作における累積ドリフトの補正技術(第2回) について解説してきました。今回はいよいよ、これらの技術を統合して実際に音声から口の動きを生成する核心部分に踏み込みます。 本記事で扱うのは、wav2vecが抽出した768次元の音響特徴量を、26個の口形制御パラメータの時系列データに変換する学習プロセスです。これは単なる次元削減ではありません。音の物理的特性を表す高次元ベクトルから、人間の口の動きという全く異なるモダリティへの変換なのです。この変換を実現するには、音韻と視覚的な口形の間にある複雑な対応関係を、ニューラルネットワークに学習させる必要があります。 特に重要なのは、この対応関係が静的ではなく動的であるという点です。同じ音素でも前後の文脈によって口の形が変わり、さらに音が聞こえる前から口が動き始めるという時間的なズレも存在します。これらの複雑な現象をどのようにモデル化し、学習させるのか。本記事では、LSTMとTransformerという2つの強力なアプロー

By Qualiteg 研究部
AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

AI時代のデータ漏洩防止の要諦とテクノロジー:第1回 AI DLPとPROXY

こんにちは!本日はAI時代のデータ漏洩防止について、とくにその通信技術面に焦点をあてつつ、AIセキュリティにどのように取り組んでいくべきか、解説いたします。 1. はじめに 生成AIの急速な普及により、企業のデータガバナンスは新たな局面を迎えています。ChatGPTやClaudeといった大規模言語モデル(LLM)は、業務効率を飛躍的に向上させる一方で、意図しない機密情報の漏洩という深刻なリスクをもたらしています。 従業員が何気なく入力した顧客情報や営業秘密が、AIサービスの学習データとして使用される可能性があることを、多くの組織はまだ十分に認識していません。従来のDLP(Data Loss Prevention)ソリューションは、メールやファイル転送を監視することには長けていましたが、リアルタイムで行われるWebベースのAIチャットやAIエージェントとの対話で発生しうる新しい脅威には対応できていないのが現状です。 本記事では、AI時代のデータ漏洩防止において中核となる技術、特にHTTPS通信のインターセプトとその限界について、技術的な観点から詳しく解説します。プロキシサーバー

By Qualiteg プロダクト開発部, Qualiteg コンサルティング