[AI新規事業創出]Qualitegが考える、仮説探索、顧客理解のための調査設計と準備方法

アイディア創出の事前準備として、ターゲットユーザーの課題を明らかにし、解決策を提案する方法を解説します。課題探索の目的と目標を定義し、競合の利用者からヒアリングします。また、調査手法と対象ユーザーの選定を明確にし、実際のインタビューでは深い洞察を得るために詳細な質問を繰り返します。

[AI新規事業創出]Qualitegが考える、仮説探索、顧客理解のための調査設計と準備方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


アイディア創出のための事前準備として、ターゲットユーザーの抱えている課題を明らかにして、その解決策を提案する方法についてご説明します。そのターゲットユーザーの課題は何かを明らかにするためにどのような調査をするべきかということについて今日は解説していきたいと思います。

ユーザーの課題探索調査のための目的と目標の明確化

まず初めに行うことは、ユーザーの課題探索調査の目的と目標の明確化です。どのような情報を収集したいのか、調査から何を得たいのかを明確に定義します。この段階で、具体的な研究質問を設定し、調査の範囲と焦点を決定します。

具体的には競合のサービス利用者の課題を聞いて、自社のサービス案とするのであれば、その競合サービスを現在利用していて、支払金額が高い人や、サービスを利用するのをやめた人をヒアリング対象にします。

woman in white long sleeve shirt sitting on red couch

このように、本調査によってどのような結果を得たいか、そのデータを使って何をしたいかというのをこの段階で明確化しましょう。

また、調査手法がインタビュー形式なのか、オンラインアンケート形式なのか、何人くらいにどのような項目を聞くのかもこのタイミングでクリアにしておく必要があります。

これらは、自身の調査目的を明らかにするだけではなくて、調査費用の社内決裁のための事前共有情報としても使えるので、面倒くさがらずにここで一度整理することをお勧めいたします。

対象ユーザーの選定とリクルー

調査の目的ゴールが決まれば次は、対象ユーザーの選定になります。よく調査を楽にするために、部署の人に声をかけてヒアリング対象にしたりするケースが多いですが、Qualitegでは身近な人をヒアリング対象にすることはおすすめせず、調査会社を使うことをお勧めいたします。

不確実性の高い環境下で企業が生き残るには、複数の未来への選択肢を持つことが重要です。株式会社Qualitegの Innovation-Crossは、企業の未来への選択肢を共創によって広げるプログラム。現状分析をもとに、オープンイノベーションやパートナー開拓を通じて「自社だけでは思いつかない」多様な可能性を発掘します。

アイデアワークショップ、ハッカソン企画、最先端AI技術の活用など、多彩なアプローチで社内外の知恵を融合させ、従来の延長線上にない革新的な選択肢を創出。経験豊富な専門コンサルタントが、御社の強みを活かしながら外部との協業による新たな道筋を描き、変化の激しい時代における戦略的柔軟性と競争優位性を高めます。未来への複数の扉を開く—それが私たちの役割です。

理由は明確で、ターゲットユーザーではない、似通った人に声をかけて、お世辞のいいねを言ってもらうことで、本来の目的である、顧客の課題をヒアリングすることができなくなってしまう恐れがあるからです。

このフェーズでは調査対象となるユーザー層を特定し、それらのユーザーがどのように製品やサービスを使用しているかを理解することが必要ですので、現在考えている、競合サービス課題仮説についてヒアリングするため、競合サービスの利用者を調査会社経由でスクリーニングしてもらい、ヒアリングすることをお勧めします。

person writing on white paper

調査対象人数の考え方とインタビュー時間

インタビューをする場合、多くの声を聴きたいのでグループインタビューをしたいというクライアント企業が多いのですが、Qualitegでのおすすめは「デプスインタビュー」となります。調査時間のおすすめは一人当たり60分~90分程度が適正でしょう。人数としては最低3名、できれば5名~7名くらいの方にヒアリングをすることをお勧めしています。

競合のサービスを利用し始めたきっかけ、利用している中で満足しているポイントや不満に思っている点を聞くのがインタビューの目的ですが、その中で機械的にこちらが質問したい内容をどんどん聞いて、Yes,Noで答えてもらうようでは、インタビュー調査をする意味がないのです。

A group of friends at a coffee shop

全ての項目において、なぜなぜ5回のように、Whyの質問を繰り返し、ユーザーがなぜその判断に至ったのか、その時の環境や心理的状況までしっかり掘り下げて聞く必要があります。そのため、最初の20分はアイスブレイクとして使い、信頼感を得て、いろいろ気軽に話してもらえる環境を整えてから、いろいろ聞いていくことで、自身が期待していたような、「真のユーザーの課題」をヒアリングすることができます。

そのため、しっかりした話をするのに30分では難しく、最低60分、できれば90分くらいの時間をかけて探索インタビューを実施することをお勧めしています。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM学習の現実:GPU選びから学習コストまで徹底解説

LLM学習の現実:GPU選びから学習コストまで徹底解説

こんにちは! なぜOpenAIやAnthropicは世界最高水準のLLMを作れるのに、それに肩を並べる日本発のLLMは存在しないのでしょうか? 技術力の差でしょうか。それとも人材の問題でしょうか。 答えはもっとシンプルです。GPUの枚数とお金です。 今日はそんな 「LLMの学習」にフォーカスをあて、そのリアルについて徹底解説いたします! 1. はじめに 「LLMを自分で学習させてみたい」 そう思ったとき、最初にぶつかる壁がGPUの問題です。 どのGPUを何枚使えばいいのか。クラウドで借りるべきか、オンプレで買うべきか。そもそも個人や小規模チームでLLM学習は現実的なのか。 本記事では、こうした疑問に対して、具体的な数字と事例を交えながら答えていきます。 たとえばLLaMA 2の学習にはA100が2,048枚使われました。DeepSeek-V3は約8億円かかりました。では、あなたの手元のGPUでは何ができるのか。そこを明らかにしていきたいと思います。 対象読者は、LLM学習に興味があるエンジニアや研究者です。PyTorchでモデルを書いたことがある程度の知識を前提とし

By Qualiteg プロダクト開発部, Qualiteg 研究部
今からはじめるClaude Code

今からはじめるClaude Code

こんにちは! 今日は、最近エンジニアの間で話題になっているAIコーディングエージェント「Claude Code」について取り上げます。 AIによるコーディング支援ツールはここ1〜2年で一気に増え、「結局どれを選べばいいのか分からない」と感じている方も多いのではないでしょうか。本記事では、そうした中でClaude Codeを実際に使ってみた所感と、Windows環境での導入・運用の考え方を整理していきます。 AIコーディングツール、どれを使う? 2025年は、AIコーディング支援が一気に“実用品”になり、選択肢が増えすぎて迷いやすい年になりました。 GitHub Copilot、Cursor、Windsurf、Devin、Aider、Cline、OpenHandsなど、商用からオープンソースまで含めると、軽く20種類を超えます。 機能や思想が似ているものも多く、情報を追うだけで疲れてしまう、という方も少なくないと思います。 以前、当社ブログでは「AIコーディングエージェント20選」で全体像を整理しました。 AIコーディングエージェント20選!現状と未来への展望 【第1回】

By Qualiteg プロダクト開発部, Qualiteg コンサルティング
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~(12月18日版)

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/12/18版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 前回は 2025/10/12 版の分析レポートを公開しましたが、たった2か月で劇的な変化がありました! (定期的に最新LLMランキングを更新してまいります。当社のX(旧Twitter)をフォローいただくことで更新情報を受け取り可能です) Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

AIコーディングエージェント20選!現状と未来への展望 【第1回】全体像と基礎

こんにちは! 今回は、20種類以上あるまさに百花繚乱なAIコーディングツールを一挙に紹介&解説していきたいとおもいます! AIをつかったコーディングはもはや常識となり、日々目まぐるしく新しいツールが登場しています。当社でも自社開発のAIコーディングツールをふくめ複数のツールを活用してソフトウェア開発をすすめていますが、次々とナイスなツールがでてきて興奮しつつも、正直キャッチアップが追いつかない…!という状況です。 「結局どれを使えばいいの?」「Claude CodeとCursorって何が違うの?」「オープンソースでも使えるやつあるの?」——そんな疑問を持っている方も多いのではないでしょうか。 そこで本シリーズでは、2025年12月時点でのAIコーディングツールを徹底的に整理してみました。商用サービスからオープンソースまで、20以上のツールを比較しながら、それぞれの特徴や使いどころ、そして現時点での限界についても現場視点をいれながら正直にお伝えしていければとおもいます ※「AIコーディングツール」は「コーディングエージェント」といったほうが今風なので記事内ではコーディングエー

By Qualiteg コンサルティング