[AI新規事業創出]Qualitegが考える、顧客理解のためのエンパシーマップ策定方法とは

[AI新規事業創出]Qualitegが考える、顧客理解のためのエンパシーマップ策定方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


新規事業開発経験ありの中級者以上の方からよくある質問です。

デザインシンキングではよく見る「共感マップ」ですが、実際新規事業開発の時に使えるものなのでしょうか?

答えは「はい、使えます、一緒にやってみましょう★」です。

私がコンサルティングさせていただいているクライアントで見てみると、日本企業より、アメリカ企業の方が使われる方が断然多い「共感マップ」。

日本企業でなぜ使われないのか、どうやったら有効的に使うことができるのかを本日は解説させていただきますね。

そもそも共感マップとは?

共感マップは、日本語でまず共感マップという翻訳がされている時点でとってもわかりづらくなっていると、個人的に思います。

英語だと "Empathy Map" と呼びます。

これらは、デザインシンキングに代表されるフレームワークで、ユーザーや顧客の行動、考え方、感情を理解するためのビジュアルツールです。

このマップは、顧客が製品やサービスをどのように感じ、考え、体験するかを深く掘り下げることを目的としています。

”共感"とは何か?

日本語で”共感”という言葉から連想することは、他人の感情や状況を理解し、それに対して感じる共鳴や同感のこと、という印象です。日本語的な”共感”は、同じように思った、同意しているというニュアンスが含まれますよね。辞書によっては”感情移入”と訳されるケースもあるようです。

一方、英語の”Empathy”はどういうニュアンスかというと、”賛同する”という意味合いよりも、”人の気持ちや問題を理解する能力”という意味が強いのです。

そのため、日本人はターゲットユーザーについてヒアリングをして”その気持ちに自分も同意して同じように共感しないとこのマップを作れない”と潜在意識的に考えてしまうので、どうも苦手意識が強いようです。

英語Nativeの人からすると、

「インタビューして相手の気持ちを汲み取って書けばいいんだよね?」

というフレームワークになりますが、

日本語で”共感マップ”を使われてきた方は

hands formed together with red heart paint

「この人の言ってる、この点は僕はそう思わないんだけどなあ。う~ん。。。」

と違和感を感じてしまうということなのです。

ということで、この共感マップについては、Qualitegではエンパシーマップと呼ぶことにしております。そして皆様はユーザーの様々な言動や意識、行動、感情を想像しながら書いて頂けばよいのです。無理に同調しなくてよいのです。

単発の革新ではなく、持続的なイノベーションの流れを創り出す—株式会社Qualitegの Innovation-Crossは、企業を中心とした共創エコシステムの構築を支援するプログラムです。企業の現状分析をもとに、社内の創造性と外部リソースを効果的に結びつける仕組みを設計。

アイデアワークショップやハッカソン企画で内部の革新力を高めながら、オープンイノベーションやパートナー開拓で外部との共創関係を構築します。最先端AI技術の活用支援も含め、「自社だけでは維持困難」な革新の連鎖を生み出すエコシステムを創出。経験豊富な専門コンサルタントが、御社を取り巻く革新の生態系を最適化し、持続的な価値創造の基盤を確立します。

共感マップを書く順番とは?

エンパシーマップの書く順番でお勧めの順番があります。この順番はQualitegのオリジナルの思考法なのですが、体験価値を言語化し、Pros/Consを分析していくという手法になっています。

  • Think and Feel(思考と感じていること)

    • ペルソナが何を考え、どのようなことを感じているのか、内面的な動機や心配事、真の感情などを書きましょう。
  • See(見ていること)

    • ペルソナが普段の日常生活で目にしているものは何か、彼らの環境や見ているものを表すことが必要です。
    • 具体的にはどのようなメディアを利用していて、周囲の人々はどういう行動しているかなどを具体的に書きましょう。
  • Hear(聞いていること)

    • ペルソナが普段の生活環境の中で、どのような情報を聞いているのか、友人、家族、同僚からどのような意見や提案を受けているのか、どのような噂を聞いて気になっているのかなどを書きましょう。
  • Say and Do(言うこと)

    • ペルソナがどのような発言をしたり、どのような行動をとっているかを書きましょう。
    • 外部に向けた行動や発言が中心となるため、SNSに発信している内容なども代表的なものになります。
  • Pains(困りごと、ストレス要因)

    • ペルソナが直面している主要な課題や、挑戦しなくてはならないこと、懸念事項などを書きましょう。
    • ストレスの要素だったり、ネガティブ材料などを書くのも個性が表現されるので、わかりやすいです。
  • Gains(困りごとの解決策)

    • ペルソナが求める願望、ニーズについて書きましょう。
    • これは書くときに誤解してしまいがちなのですが、「将来金持ちになりたい」というような漠然とした願望ではなく、5のPain=課題に対する解決策としてどのようなことを望んでいるかということを想像して具体的に書いてみましょう。

エンパシーマップは、サービス開発やデザイン、マーケティング戦略立案など、顧客中心のアプローチを検討する際に非常に役立ちます。

person in white shoes standing on gray concrete road

今までエンパシーマップを書いたことが無い方も是非、このステップをおさらいしながら書いてみてください。

いつもよりもユーザーの気持ちを想像しやすくなり、UIUX検討時に具体的なアイコンサイズや顧客の具体的なサービスの利用シーンなどがイメージしやすくなり、チームの認識合わせもやりやすくなるため、開発も加速することでしょう。

例えば、専業主婦の方がターゲットユーザーであるサービスを開発している場合、

この後、子供のお迎えに行かなきゃいけない。その前に急ぎでお夕飯の支度を作らなくちゃいけない。。!

と焦っているような場合、ボタンアイコンの押し忘れやミスがないように大きめに設定してあげるなど、意外とエンパシーマップもUIUX検討に使えるのでお勧めいたします。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

Node.jsで大容量ファイルを扱う:AIモデルのような大きなデータ保存はストリーム処理使いましょう

こんにちは!今日はAIシステムのフロントサーバーとしてもよく使用するNode.jsについてのお話です。 AIモデルの普及に伴い、大容量のデータファイルを扱う機会が急増しています。LLMなどのモデルファイルやトレーニングデータセットは数GB、場合によっては数十、数百GBにも達することがあります。 一方、Node.jsはWebアプリケーションのフロントサーバーとして広く採用されており、データマネジメントやPythonで書かれたAIバックエンドとの橋渡し役としてもかなりお役立ちな存在です。 本記事では、Node.js v20LTSで5GB程度のファイルを処理しようとして遭遇した問題と、その解決方法について解説します。 Node.jsのバッファサイズ制限の変遷 Node.jsのバッファサイズ制限は、バージョンによって大きく変化してきました Node.jsバージョン サポート終了日 バッファサイズ上限 備考 Node.js 0.12.x 2016年12月31日 ~1GB 初期のバッファサイズ制限(smalloc.kMaxLength使用) Node.js 4.

By Qualiteg プロダクト開発部
AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

AGI時代に向けたプログラマーの未来:役割変化とキャリア戦略

はじめに 私がはじめてコードを書いたのは1989年です。 当時NECのPC88というパソコンを中古でかってもらい N-88 Basic というBASIC言語のコードをみようみまねで書いて動かしたあの日から何年経つのでしょうか。 当時、電波新聞社のマイコンBASICマガジンという雑誌があり、ベーマガにはいろんなパソコン向けのプログラムコードが掲載されていました。 そんなわけでもう35年以上趣味や仕事でプログラミングに従事していますが、開発環境、情報流通の仕組みには革命といっていいほどの変化、進化がおこりました。 しかしながら、そんな中でも、あくまでコードを書くのは「私」という生身の人間でした。 そうしたある種の古き良き時代は、いよいよ本格的に終わりを告げようとしています。 2023年ごろからのLLM技術の飛躍的進歩により、プログラミング業界は大きな転換期を迎えています。 特に、OpenAI o3,o1やClaude 3.5、Gemini2.0などの大規模言語モデル(LLM)の進化や、その先にある将来的な汎用人工知能(AGI)の出現は、プログラマーやAIエンジニアの役割に根

By Tomonori Misawa / CEO
PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

PythonとWSL開発のトラブルシューティング: PyCharmとCondaの環境不一致問題

こんにちは! 今回は、WSL上のConda環境をPyCharmから利用する際に発生した「同じ環境なのにパッケージリストが一致しない」という問題に遭遇したため、その原因と対策について書いてみたいとおもいます 問題の状況 開発の流れは以下のようなものでした 1. WSL環境でConda仮想環境を作成 2. その環境をPyCharmのプロジェクトインタプリタとして設定 3. 開発を進める中で奇妙な現象に気づく 具体的には、次のような不一致が発生していました * PyCharmのプロジェクト設定で表示されるpipパッケージのリスト * WSLでConda環境をアクティベートした後にpip listコマンドで表示されるパッケージのリスト これらが一致せず、「WSL側のシェルから直接インストールしたパッケージがPyCharmで認識されない」という問題が生じていました。 この手の問題でよくある原因は、PyCharm側がWSL側の更新を得るのに少し時間がかかったり、 Indexing が遅れているなどなのですが、今回はそれが原因ではありませんでした。 危険な「静かな

By Qualiteg プロダクト開発部
人気ゲーム「ヒット&ブロー」で学ぶ情報理論

人気ゲーム「ヒット&ブロー」で学ぶ情報理論

こんにちは! Qualiteg研究部です! 今日はAIにおいても非常に重要な情報理論について、Nintendo Switchの人気ゲーム「世界のアソビ大全51」にも収録されている「ヒット&ブロー」というゲームを題材に解説いたします! はじめに 論理的思考力を鍛える定番パズルゲームとして長年親しまれている「ヒット&ブロー」(海外では「Mastermind」として知られています)。 このゲームは一見シンプルながらも、その攻略には深い論理的アプローチが必要とされております。 本稿では、このゲームについて情報理論という数学的概念を用いてゲームの素性を分析する方法について掘り下げてみたいとおもいます。 さらに、この情報理論が現代の人工知能(AI)技術においてどのように活用されているかについても触れていきます。 ヒット&ブローのルール説明 ヒット&ブローは、相手が秘密に設定した色や数字の組み合わせを推測するゲームです。日本では主に数字を使った「数当てゲーム」として親しまれていますが、本記事では色を使ったバージョン(マスターマインド)に焦点を当てます。 Nintendo Sw

By Qualiteg 研究部