[AI新規事業創出]Qualitegが考える、顧客理解のためのエンパシーマップ策定方法とは

[AI新規事業創出]Qualitegが考える、顧客理解のためのエンパシーマップ策定方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


新規事業開発経験ありの中級者以上の方からよくある質問です。

デザインシンキングではよく見る「共感マップ」ですが、実際新規事業開発の時に使えるものなのでしょうか?

答えは「はい、使えます、一緒にやってみましょう★」です。

私がコンサルティングさせていただいているクライアントで見てみると、日本企業より、アメリカ企業の方が使われる方が断然多い「共感マップ」。

日本企業でなぜ使われないのか、どうやったら有効的に使うことができるのかを本日は解説させていただきますね。

そもそも共感マップとは?

共感マップは、日本語でまず共感マップという翻訳がされている時点でとってもわかりづらくなっていると、個人的に思います。

英語だと "Empathy Map" と呼びます。

これらは、デザインシンキングに代表されるフレームワークで、ユーザーや顧客の行動、考え方、感情を理解するためのビジュアルツールです。

このマップは、顧客が製品やサービスをどのように感じ、考え、体験するかを深く掘り下げることを目的としています。

”共感"とは何か?

日本語で”共感”という言葉から連想することは、他人の感情や状況を理解し、それに対して感じる共鳴や同感のこと、という印象です。日本語的な”共感”は、同じように思った、同意しているというニュアンスが含まれますよね。辞書によっては”感情移入”と訳されるケースもあるようです。

一方、英語の”Empathy”はどういうニュアンスかというと、”賛同する”という意味合いよりも、”人の気持ちや問題を理解する能力”という意味が強いのです。

そのため、日本人はターゲットユーザーについてヒアリングをして”その気持ちに自分も同意して同じように共感しないとこのマップを作れない”と潜在意識的に考えてしまうので、どうも苦手意識が強いようです。

英語Nativeの人からすると、

「インタビューして相手の気持ちを汲み取って書けばいいんだよね?」

というフレームワークになりますが、

日本語で”共感マップ”を使われてきた方は

hands formed together with red heart paint

「この人の言ってる、この点は僕はそう思わないんだけどなあ。う~ん。。。」

と違和感を感じてしまうということなのです。

ということで、この共感マップについては、Qualitegではエンパシーマップと呼ぶことにしております。そして皆様はユーザーの様々な言動や意識、行動、感情を想像しながら書いて頂けばよいのです。無理に同調しなくてよいのです。

単発の革新ではなく、持続的なイノベーションの流れを創り出す—株式会社Qualitegの Innovation-Crossは、企業を中心とした共創エコシステムの構築を支援するプログラムです。企業の現状分析をもとに、社内の創造性と外部リソースを効果的に結びつける仕組みを設計。

アイデアワークショップやハッカソン企画で内部の革新力を高めながら、オープンイノベーションやパートナー開拓で外部との共創関係を構築します。最先端AI技術の活用支援も含め、「自社だけでは維持困難」な革新の連鎖を生み出すエコシステムを創出。経験豊富な専門コンサルタントが、御社を取り巻く革新の生態系を最適化し、持続的な価値創造の基盤を確立します。

共感マップを書く順番とは?

エンパシーマップの書く順番でお勧めの順番があります。この順番はQualitegのオリジナルの思考法なのですが、体験価値を言語化し、Pros/Consを分析していくという手法になっています。

  • Think and Feel(思考と感じていること)

    • ペルソナが何を考え、どのようなことを感じているのか、内面的な動機や心配事、真の感情などを書きましょう。
  • See(見ていること)

    • ペルソナが普段の日常生活で目にしているものは何か、彼らの環境や見ているものを表すことが必要です。
    • 具体的にはどのようなメディアを利用していて、周囲の人々はどういう行動しているかなどを具体的に書きましょう。
  • Hear(聞いていること)

    • ペルソナが普段の生活環境の中で、どのような情報を聞いているのか、友人、家族、同僚からどのような意見や提案を受けているのか、どのような噂を聞いて気になっているのかなどを書きましょう。
  • Say and Do(言うこと)

    • ペルソナがどのような発言をしたり、どのような行動をとっているかを書きましょう。
    • 外部に向けた行動や発言が中心となるため、SNSに発信している内容なども代表的なものになります。
  • Pains(困りごと、ストレス要因)

    • ペルソナが直面している主要な課題や、挑戦しなくてはならないこと、懸念事項などを書きましょう。
    • ストレスの要素だったり、ネガティブ材料などを書くのも個性が表現されるので、わかりやすいです。
  • Gains(困りごとの解決策)

    • ペルソナが求める願望、ニーズについて書きましょう。
    • これは書くときに誤解してしまいがちなのですが、「将来金持ちになりたい」というような漠然とした願望ではなく、5のPain=課題に対する解決策としてどのようなことを望んでいるかということを想像して具体的に書いてみましょう。

エンパシーマップは、サービス開発やデザイン、マーケティング戦略立案など、顧客中心のアプローチを検討する際に非常に役立ちます。

person in white shoes standing on gray concrete road

今までエンパシーマップを書いたことが無い方も是非、このステップをおさらいしながら書いてみてください。

いつもよりもユーザーの気持ちを想像しやすくなり、UIUX検討時に具体的なアイコンサイズや顧客の具体的なサービスの利用シーンなどがイメージしやすくなり、チームの認識合わせもやりやすくなるため、開発も加速することでしょう。

例えば、専業主婦の方がターゲットユーザーであるサービスを開発している場合、

この後、子供のお迎えに行かなきゃいけない。その前に急ぎでお夕飯の支度を作らなくちゃいけない。。!

と焦っているような場合、ボタンアイコンの押し忘れやミスがないように大きめに設定してあげるなど、意外とエンパシーマップもUIUX検討に使えるのでお勧めいたします。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

LLM推論基盤プロビジョニング講座 第3回 使用モデルの推論時消費メモリ見積もり

こんにちは!前回はLLMサービスへのリクエスト数見積もりについて解説しました。今回は7ステッププロセスの3番目、「使用モデルの推論時消費メモリ見積もり」について詳しく掘り下げていきます。 GPUメモリがリクエスト処理能力を決定する LLMサービス構築において、GPUが同時に処理できるリクエスト数はGPUメモリの消費量によって制約されます。 つまり、利用可能なGPUメモリがどれだけあるかによって、同時に何件のリクエストを処理できるかがほぼ決まります。 では、その具体例として、Llama3 8B(80億パラメータ)モデルをNVIDIA RTX A5000(24GB)にロードするケースを考えてみましょう。 このGPUには24GBのGPUメモリがありますが、すべてをリクエスト処理に使えるわけではありません。最初にモデル自体が一定量のメモリを消費し、残りの領域で実際のリクエスト処理を行います。 GPUメモリ消費の二大要素 GPUの消費メモリ量は主に以下の2つの要素によって決まります 1. モデルのフットプリント LLMをGPUに読み込んだときに最初に消費されるメモリ

By Qualiteg コンサルティング
システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

システムとcondaのC++標準ライブラリ(libstdc++)のバージョン違い問題による事象と対処法解説

こんにちは! 先日、dlibをつかったPythonアプリケーション(conda環境で動作する)作っていたところ、以下のようなエラーに遭遇しました。 ImportError: /home/mlu/anaconda3/envs/example_env/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.32' not found (required by /home/mlu/anaconda3/envs/example_env/lib/python3.10/site-packages/_dlib_pybind11.cpython-310-x86_64-linux-gnu.so) 「dlib_pybind11モジュールがGLIBCXX_3.4.32を要求してるけど、みつからない!」という感じのエラーですね。

By Qualiteg プロダクト開発部
LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

LLM推論基盤プロビジョニング講座 第2回 LLMサービスのリクエスト数を見積もる

こんにちは! 今回はLLM推論基盤プロビジョニング講座 第2回です! STEP2 LLMサービスへのリクエスト数見積もり それでは、早速、LLM推論基盤プロビジョニングの第2ステップである「リクエスト数見積もり」の重要性と方法を解説いたします。 LLMサービスを構築する際に必要となるGPUノード数を適切に見積もるためには、まずサービスに対して想定されるリクエスト数を正確に予測する必要があります。 リクエスト数見積もりの基本的な考え方 LLMサービスへの想定リクエスト数から必要なGPUノード数を算出するプロセスは、サービス設計において非常に重要です。過小評価すればサービス品質が低下し、過大評価すれば無駄なコストが発生します。このバランスを適切に取るための基礎となるのがリクエスト数の見積もりです。 想定リクエスト数の諸元 リクエスト数を見積もるための5つの重要な要素(諸元)をみてみましょう。 1. DAU(Daily Active Users): 1日あたりの実際にサービスを利用するユーザー数です。これはサービスの規模を示す最も基本的な指標となります。 2. 1日

By Qualiteg コンサルティング
Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

Zoom会議で肩が踊る?自動フレーミング映像安定化とAIによる性能向上の可能性

こんにちは! 本日は、自動フレーミング映像の安定化に関するアルゴリズム・ノウハウを解説いたします 第1章 問題の背景と目的 バストアップ映像を撮影する際、特にオンラインミーティングやYouTubeなどのトーク映像では、人物がうなずく、首を振るなどの自然な動作をした際に「首まわりや肩がフレーム内で上下に移動してしまう」という現象がしばしば起こります。これは、多くの場合カメラや撮影ソフトウェアが人物の「目や顔を画面中央に保とう」とする自動フレーミング機能の働きに起因します。 撮影対象の人物が頭を下げた際に、映像のフレーム全体が相対的に上方向へシフトし、その結果、本来動いていないはずの肩の部分が映像内で持ち上がっているように見えてしまう現象です。 本稿では、この問題を撮影後の後処理(ポストプロセッシング)のみを用いて、高速、高い精度かつロバストに解決する手法をご紹介します。 前半では、従来のCV(コンピュータービジョン)の手法を使い高速に処理する方法をご紹介します。後半では、AIを使用してより安定性の高い性能を実現する方法について考察します。 第2章 古典手法による肩の上下

By Qualiteg 研究部