[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の評価方法とは

多くの企業が顧客の課題を担当者の直観に頼り、誤解を招くことが多いです。課題選定には市場やユーザーのニーズを深く理解し、新規事業の目的と合致することが重要です。Qualitegの提案では、事業責任者との初期合意に基づき、目的に適した課題を選ぶべきと考えています。

[AI新規事業創出] Qualitegオリジナル、効果的な顧客課題の評価方法とは

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


顧客の課題がいくつか見つかったときに、どの課題に対して、自社のサービスを検討すべきか悩まれる方が非常に多くいらっしゃいます。

顧客の課題は担当者が決めるべきなのか?

多くのクライアントに「顧客課題はどのように決定されましたか?」とお伺いすると、約8割の方は「担当者の直観で決めた」とお答えくださる方が多いです。

その「担当者の直観」が当たるといいのですが、ほとんどのクライアントが事業責任者向け説明会で

「それって君がその課題がいいって思っただけでしょ」

と突っ込まれて、やり直しになってしまわれた、どうやって進めたらいいのだろうか、とご相談を受けるケースが非常に多いです。

きちんと市場調査、ユーザー調査をなさった企画担当者の方であればあるほど、ご自身が一番市場やユーザーの方を理解してると思っていらっしゃる方が多いのです。もちろんそれはある意味正しいのかもしれません。

でも、今一度落ち着いて考えていただきたいことは

その課題は自社のターゲットユーザーがお金を払ってまで解決したいと思う強いニーズはあるのか

という点なのです。

Qualitegが提唱する「顧客課題の決定方法」

では、どのように「顧客課題」を選定するべきでしょうか。

持続的なイノベーションには、それを育む組織文化と外部連携の仕組みが必要です。株式会社Qualitegの Innovation-Crossは、企業内のイノベーション文化醸成と外部との共創体制構築を支援するプログラム。

現状分析をもとに、社内の創造性を刺激するアイデアワークショップや、外部との協業を促進するハッカソン企画など、多様なアプローチで「自社だけでは構築困難」な革新の土壌を作ります。最先端AI技術の活用支援も含め、イノベーションを継続的に生み出す組織の在り方と、外部リソースを効果的に取り込む連携の仕組みを設計。経験豊富な専門コンサルタントが、御社の革新力を根本から強化する文化と体制の構築を導きます。

私たちはまず初めに、「事前に事業責任者と合意した、新規事業立ち上げの目的」に立ち戻り、その際の選定クライテリアを抽出することをお勧めします。

詳細については

[AI新規事業創出]Qualitegが考える、企画後にもめないための新規事業承認判断軸の検討方法とは

の記事も合わせてご確認いただければ幸いです。

今回例に挙げている、電動自転車スタートアップを例とした場合、今回の新規事業開発の目的は

「新UX創出」として、「自社のターゲットユーザーである都市部で働くビジネスマンの生活充実度を向上させるサービスを市場導入することをゴールとする」
たとえば、方向性としては、オフィスや自宅などでもできる健康維持ができるサービスや、仕事の疲れが取れるリフレッシュできるサービス、自身のキャリアアップのためのサポートができるサービスなどを考えたいと思っています。

であることに決定しました。

それをすっかり忘れて、目についたり、自分が簡単に課題解決できそうな課題に飛びついてしまうのはNGです。

ここでミスしやすいのが

電気自転車をレンタルしたいと思って借りてみたが、充電された電気量が少なかった

というファクトが顧客の課題である、というところまではよいのですが、それを解決するために

「各自転車の残量がわかるサービスを企画する」

というようなケースです。

この課題に対しての解決策であるという意味では間違えていないのですが、根本に戻ると、今回の新規事業に期待されている 「新UX創出」 やそれらをブレイクダウンした、
「自社のターゲットユーザーである都市部で働くビジネスマンの生活充実度を向上させるサービスを市場導入する」 から離れてしまっていますよね?

time lapse photo of person riding on white road bicycle

事業開発目的に沿った課題の抽出を

企画担当者ご自身に期待されているのは「新UX創出」です。

そして、ご自身が以前事業責任者に約束したのは「自社のターゲットユーザーである都市部で働くビジネスマンの生活充実度を向上させるサービスを市場導入する」ですから、課題もそれらに沿った形で抽出することが必要です。

たとえば、

「電気自転車と徒歩や公共交通機関を組み合わせて、時間通りに目的地に着くにはどうするべきか」

ですとか、

「電気自転車の電源が切れてもステーションの位置がわかり、短時間でもきちんと運動した結果もわかってダイエットになると認識してもらうためにはどうするべきか」

このような形で顧客の課題を評価してみるとよいでしょう。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

発話音声からリアルなリップシンクを生成する技術 第5回(後編):Transformerの実装と実践的な技術選択

なぜGPTで成功したTransformerが、リップシンクでは簡単に使えないのか?データ量・計算量・過学習という3つの課題を深掘りし、LSTMとTransformerの実践的な使い分け方を解説。さらに転移学習という第三の選択肢まで、CEATEC 2025で見せた「アバター」の舞台裏を、クオ先生とマナブ君の対話でわかりやすく紐解きます。

By Qualiteg プロダクト開発部
(株)Qualiteg、CEATEC 2025 出展レポート

(株)Qualiteg、CEATEC 2025 出展レポート

こんにちは! 2025年10月14日から17日までの4日間、幕張メッセで開催されたアジア最大級の総合展示会「CEATEC 2025」(主催者発表、総来場者数98,884名)に、株式会社Qualitegとして出展してまいりました! プレスリリース 株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験株式会社Qualitegのプレスリリース(2025年10月10日 08時50分)株式会社Qualiteg、CEATEC 2025に出展 ― AIアバター動画生成サービス「MotionVox®」最新版を実体験PR TIMES株式会社Qualiteg CEATEC 2025 出展概要 当社は幕張メッセのホール6にあるネクストジェネレーションパークというエリアの 6H207 にブースを構えました。 「Innovation for All」というCEATECのテーマにあわせ、今回は、 AIアバター動画生成サービスMotionVoxを中心に当社の革新的なAIソリューションを展示させていただきました。 展示内容紹介に

By Qualiteg ビジネス開発本部 | マーケティング部, Qualiteg ニュース
日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

日本語対応 LLMランキング2025 ~ベンチマーク分析レポート~

はじめに 本レポートは、Nejumi Leaderboard 4のベンチマークデータ(2025/10/11版)に基づいて、日本語対応LLMの性能を総合的に分析したものです。 Nejumi Leaderboard 4は、日本語タスクにおけるLLMの性能を多角的に評価する信頼性の高いベンチマークとして知られています。 本分析では、総合スコアとコーディングスコアの2つの観点から、商用APIモデルとオープンモデルの両方を対象に、それぞれの特徴や傾向を詳しく見ていきます。 オープンソースモデルについて Weightがオープンなモデルは場合によっては「オープンソースモデル」、「OSSモデル」と呼ばれますが、モデルによっては「オープンソース」と呼ぶには不十分な場合があるため本稿では、「オープンソースモデル」ではなく「オープンモデル」と表現しています。 ベンチマーク分析について 本レポートは、LLM選択の参考情報として、ベンチマークデータから読み取れる傾向や特徴を提示するものです。最終的なモデル選択においては、これらの情報を踏まえつつ、実際の使用環境での検証を行うことをおすすめいたし

By Qualiteg コンサルティング, Qualiteg プロダクト開発部
Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

Pythonの落とし穴:__len__メソッドを実装したらオブジェクトの真偽値判定が変わってしまった話

こんにちは! Pythonでカスタムクラスを作成していて、 「オブジェクトは存在するのにif文でFalseと判定される」 という不可解な現象に遭遇したことはありませんか? この記事では、__len__メソッドを実装することで生じる、予期しない真偽値判定の挙動について解説いたします! 実際に遭遇したバグ ユーザーの投稿を管理するクラスを実装していたときのことです class PostManager: """ブログ投稿を管理するクラス""" def __init__(self, user_id): self.user_id = user_id self._posts = [] self._cache = {} def __len__(self): """投稿数を返す""" return len(self._posts) def add_post(

By Qualiteg プロダクト開発部