[AI新規事業創出]Qualitegが考える、アイディア創造フレームワークを利活用する理由

[AI新規事業創出]Qualitegが考える、アイディア創造フレームワークを利活用する理由

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。


アイディア創造を行う際に皆さんどのようなステップで検討されていますか?多くの企業様のコンサルティングをさせていただいている中で、最も多いのが、「突然のブレスト」ですが、どのような事業を行いたいか=誰に何を売っていきたいのかを最初に考えずに思い付きのままに意見を出し合い、結果的に無駄な時間を過ごしてしまい良いアイディアが出なかったとおっしゃる方も多いです。

本日はアイディア創造は思い付きではなく、きちんとフレームワークを利活用すべしと考えるQualitegのメソッドをお伝えしたいと思います。

まず、初めに行うことは

「誰に商品やサービスを提供したいか」を考えることです。

ターゲットユーザーはどのようなことを考えているかを理解し、仮説課題やニーズの確からしさを確認する必要があります。

これらは以前お伝えしましたエンパシーマップを活用していただくことが多いのですが、その前にアンケートなどの定量調査やインタビューなどの定性調査を通じて、自社の事業領域に合ったターゲットセグメントを確認し、対象を詳細にイメージする必要があります。

その理由として、自社の新規事業だからと言って、対象ユーザーや販路が異なる場合、なかなか市場投入後もユーザーを獲得するのが難しいというのが理由です。ですから、現状の自社の有力サービスを使ってくださっているユーザー向けに新しいサービスを提供するのが、新規事業開発の一つのメソッドであると考えているため、この方式をお勧めしております。

white and red love neon light signage

その際に事前調査で発見したユーザーの問題や課題、ニーズを再確認することも重要です。問いを発散させるためのフレームワークとしてデザインシンキングでは「How Might We」というフレームワークを用いることもあります。

日本語的な感覚で表現してみると

「どうすれば我々は、<誰>の為に、<何>を実現できるのだろうか?」

というフレームワークです。

「どうしたら我々は入社を希望しているインターン生の為に、実践的かつ、会社の風土を体感してもらえるようなトレーニングを提供できるだろうか」

このような問いの形をより具現化し、たくさんアイディアを出すためにHow Might Weは有効です。

他にも上司や同僚に気を使わないでできる、ブレインストーミングの手法や、思わぬアイディアを創出できるオズボーンのチェックリストなど、多くのアイディア出しのフレームワークもありますので、いろいろご紹介していきたいと思います。


コラムを最後までお読みいただき、誠にありがとうございます。私たちQualitegは、AI技術や新規事業の企画方法に関する研修およびコンサルティングを提供しております。もしご興味をお持ちいただけた場合、また具体的なご要望がございましたら、どうぞお気軽にこちらのお問い合わせフォームまでご連絡くださいませ。

また、新規事業創出のステップを体得したいという方にご好評のワークショップも実施しております。それぞれの担当者の方が役員目線で事業を考えるという点にフォーカスしたトレーニング内容となっており、企画担当者の方だけではなく、カウンターパートのエンジニア、デザイナー、マーケターの方にもご受講いただけるコンテンツとなっております。

皆様からのお問い合わせを心よりお待ちしております。次回のコラムも、ぜひご期待くださいね。


navigation

Read more

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

【解説】Tekken トークナイザーとは何か? 〜 Mistral が採用する新世代トークナイザーの特徴

こんにちは! 本日は、Tekkenについて解説いたします! 皆さま Tekken と聞いて何を思い浮かべますか? 格ゲーの鉄拳でしょうか? 私は、昔プレイした Age of Empires に登場する鉄剣戦士を思い浮かべました🤗 ちょっと古いかもしれませんが、名作です! さてつかみはこのくらいにして、、 LLMはご存じのとおり驚異的なスピードで進化しています。そんな中でひそかに注目されているのが、トークナイザーの改善です。 たとえば、Meta の Llama 系モデルのトークナイザーは Sentence Piece から BPE系へ進化するなど、LLM業界では従来よりも高効率なトークナイズ(テキスト分割)の方法を導入し始めています。 そして Mistral AI もまた、新たに「Tekken トークナイザー」という仕組みを採用し、大規模言語モデルの性能を底上げしています。 本記事では、Tekken トークナイザーの登場背景や技術的特徴、他のトークナイザーとの違い、さらには Mistral との関係などをわかりやすく解説していきます。 1. Tekken トーク

By Qualiteg プロダクト開発部
[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

[AI新規事業創出]Qualitegオリジナル、アイディア評価、事業アイディア選定方法

Qualiteg blogを訪問してくださった皆様、こんにちは。Micheleです。AIを活用した新規事業やマーケティングを手がけている私には、クライアントからよく寄せられる質問があります。AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、このブログを通じて私なりの解答をご提供したいと思います。 はじめに AI技術の急速な発展は、スタートアップから大企業まで、あらゆるビジネスに新たな可能性をもたらしています。クライアントとの会話の中でも、AIを活用した革新的な事業アイディアに関する相談が増えています。 しかし、多くの企業が「素晴らしいアイディアを思いついた!」と興奮しながらも、そのアイディアを具体化し、成功に導くための方法論に悩んでいるのも事実です。特にAIを用いた事業展開においては、従来のビジネスモデルとは異なる視点が必要となるため、その難しさはさらに増します。 本記事では、Qualitegオリジナルのアイディア評価、事業アイディア選定方法について解説します。特に、AIを用いた事業展開を検討されている方々が共通して直面するであろう課題に対して、

By Join us, Michele on Qualiteg's adventure to innovation
日本語対応!Mistral Small v3 解説

日本語対応!Mistral Small v3 解説

こんにちは! Mistral AIは2025年1月30日、新しい言語モデル「Mistral Small v3」を発表しました。このモデルは、24Bという比較的小規模なパラメータ数ながら、70B以上の大規模モデルに匹敵する性能を実現しています。また日本語対応も謳われており期待の高い小型モデルです! https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 動画 こちら本ブログの解説動画もご覧いただけます😊 きわだってるのは、レイテンシー最適化 Mistral Small 3のめだった特徴は、その処理性能とレイテンシーの絶妙なバランスではないでしょうか。 公開されている以下の性能評価のグラフによると、トークンあたり約11ミリ秒という業界最速レベルのレイテンシーを達成しています。これは、Qwen-2.5 32Bの約15ミリ秒やGemma-2 27Bの約14ミリ秒と比較して、明確な優位性を示しています。さらに注目すべきは、GPT-4o Miniと比較しても、より低いレイテンシーで同等以上の性能を実現し

By Qualiteg プロダクト開発部
[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

[vLLM] To use CUDA with multiprocessing, you must use the 'spawn' start method の対処法

WSLで vLLM を使用するとき、 tensor parallel を使って複数枚のGPUで1つのLLMをサーブしようとしたとき以下のようなエラーが発生しがちです RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method 遭遇するシーンとしてはvLLMの起動オプションに以下のようにテンソル並列化オプションを指定したときです。 --tensor-parallel-size 2 つまり、マルチプロセッシングでCUDA使うときは、 "fork"じゃなくて"spawn" 使ってね、というエラーです。 これを vLLM に教えるために、以下の2行目のように環境変数を設定してあげるとvLLMが "spawn" を使ってくれるようになります。 export

By Qualiteg プロダクト開発部